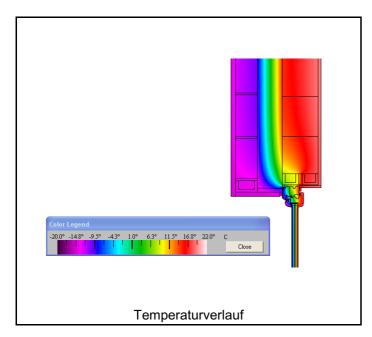


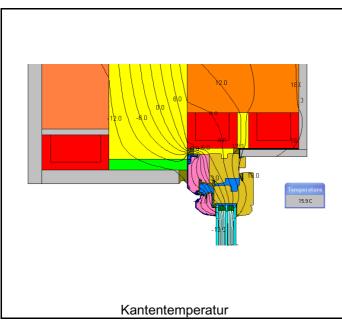
Wärmebrückenkatalog

Niedrigenergiehaus - Anschlussdetails



VERANKERUNG DER VORMAUERUNG: EDELSTAHLANKER Ø 4 mm, 5 Stk / m2

Detail Nr. 7 - Fensteranschluss oben



Wandaufbau	d [m]	$\lambda [\text{W/mK}]$	$R = d/\lambda$	Einh.
Rse =			0,040	m²K/W
Außenputz	0,025	0,700	0,036	m²K/W
PTH 12-50 N+F	0,120	0,330	0,364	m²K/W
Kerndämmplatte	0,140	0,040	3,500	m²K/W
PTH 20-40 O. Plan	0,200	0,340	0,588	m²K/W
Kalk-Gipsputz	0,015	0,600	0,025	m²K/W
Rsi =			0,130	m²K/W
∑ R =			4,683	m²K/W
U = 1/R			0,214	W/m²K

Wärmeschutz

Fenster			Einh.
Ug		0,500	W/m²K
U _f		0,870	W/m²K
$U_{\rm w}$		0,710	W/m²K

Sonstiges

- Fenster: Internorm ed[it]ion Holz/Alu
- Bei der Überdämmung des Fensterstockes ist die Ausführung in vertikaler und horizontaler Richtung abzustimmen. Eine weniger starke Überdämmung des Fensters in vertikaler Richtung wird in diesem Fall keinen maßgeblichen Effekt auf die bauphysikalischen Ergebnisse haben.
- Berechnungsergebnisse ohne Einfluß der Zwischengeschossdecke
- \bullet Für die Ermittlung des $\psi\textsc{-Wertes}$ wurde die Architekturlichte der Fensterabmessung als Abzugsfläche verwendet.
- Der ψ -Wert kann durch eine Optimierung im Bereich Alu-Außenkante des Fensters deutlich verbessert werden. (siehe Empfehlung \Rightarrow)

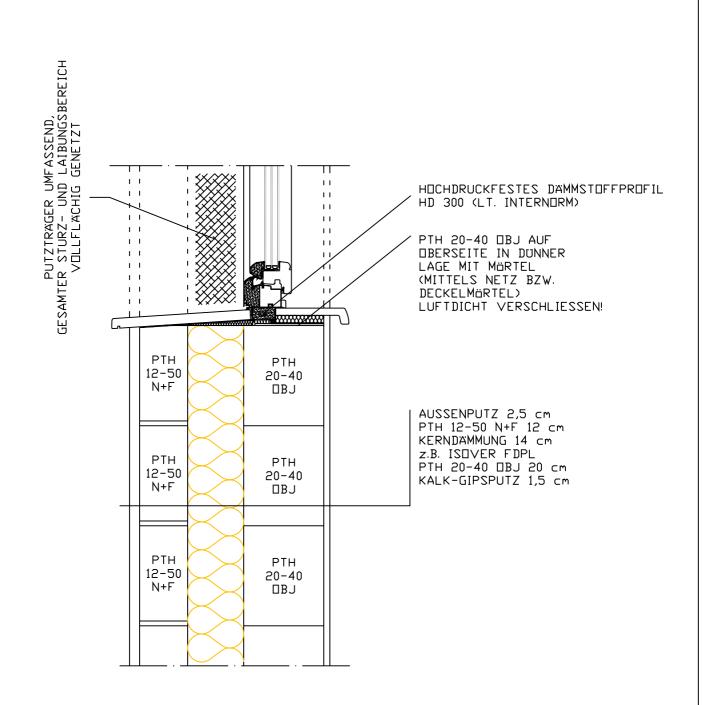
Wärmebrücken

ψ - Wert			Einh
θ_a =		-15,0	K
θ_i =		20,0	K
$\Delta\theta =$		35,0	K
Ψ _{F,OBEN} =		0,14	W/mK

Kondensatrisiko

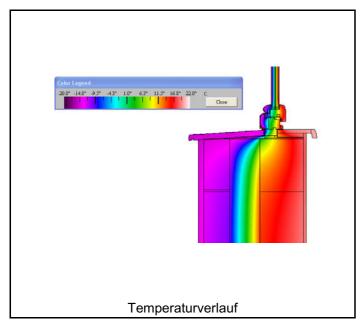
$\theta_{i,s}$ =		15,9	°C
f* _{Rsi} =		0,88	

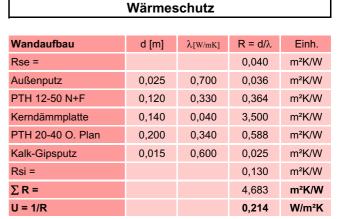
Verarbeitung

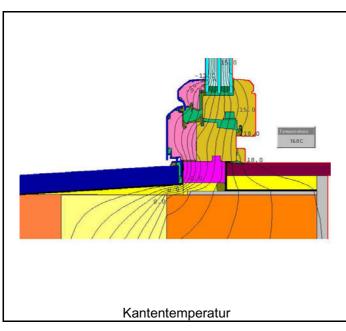

• Auf die Luftdichtheit des Fensteranschlusses ist speziell zu achten.

Gemäß ÖNORM B 5320 sind jeweils zwei Dichtungsebenen auszubilden:

- Innenseitig: luftdicht und dampfdicht (z.B. Illbruck Fensterfolie innen)
- Aussenseitig: winddicht und diffusionsoffen (z.B. Vorkomprimiertes Dichtungsband Illmod eco)


Empfehlung

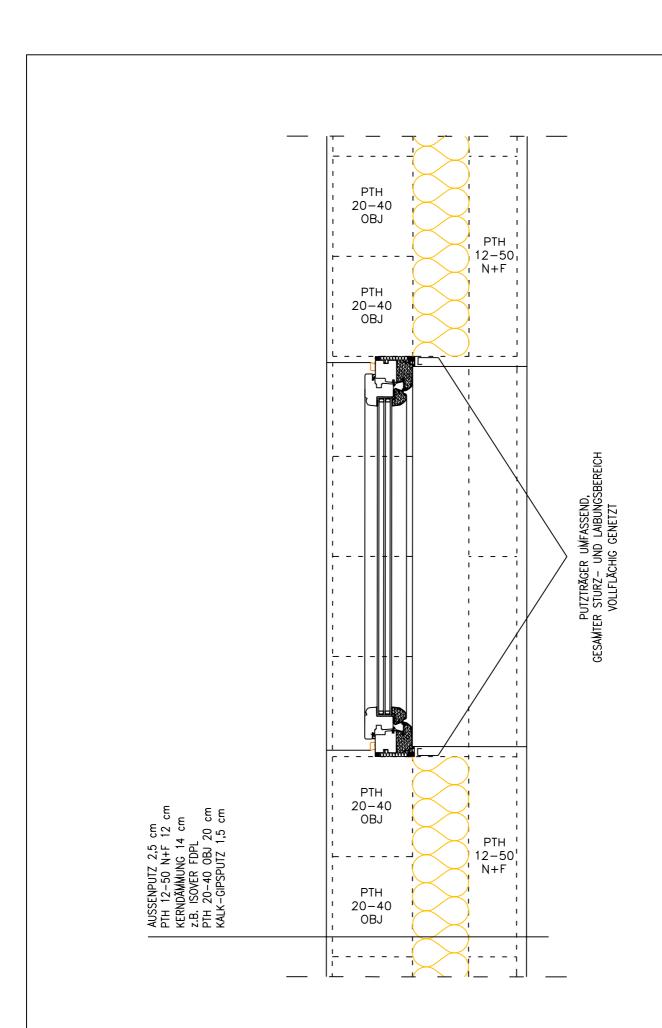

Die bauphysikalischen Werte können deutlich verbessert werden, wenn die Alu-Abdeckung des Fensterrahmens nicht den Ziegelsturz berührt (⇒ Bestellung Schweizer Rahmen oder Anordnung des Fensters weiter außen).


Detail Nr. 8 - Fensteranschluss unten

Fenster			Einh.
Ug		0,500	W/m²K
U _f		0,870	W/m²K
U _w		0,710	W/m²K

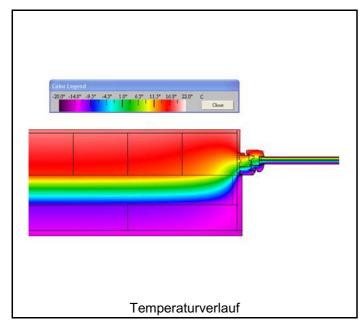
Sonstiges

- Fenster: Internorm ed[it]ion Holz/Alu
- \bullet Für die Ermittlung des $\psi\textsc{-Wertes}$ wurde die Architekturlichte der Fensterabmessung als Abzugsfläche verwendet.

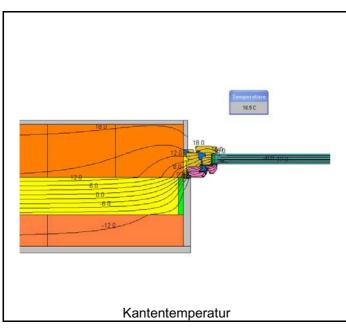

,	Wärmebrücken

ψ - Wert		Einh
θ_a =	-15,0	K
θ_i =	20,0	K
$\Delta\theta$ =	35,0	K
$\psi_{F,UNTEN}$ =	0,12	W/mK

1/ -	1	4	- : 1
NO	nden	satrı	SIKO


$\theta_{i,s}$ =		16,0	°C
f* _{Rsi} =		0,89	


- Auf die Luftdichtheit des Fensteranschlusses ist speziell zu achten.
- Gemäß ÖNORM B 5320 sind jeweils zwei Dichtungsebenen auszubilden:
- Innenseitig: luftdicht und dampfdicht (z.B. Illbruck Fensterfolie innen)
- Aussenseitig: winddicht und diffusionsoffen (z.B. Vorkomprimiertes Dichtungsband Illmod eco)
- Die Mauerkrone des Parapetes ist durch eine vollflächig deckende Mörtelschicht zu verschließen (bei Planziegel-System: 1mm).
- Das Fensterbrett ist auf 2-3 cm Wärmedämmung und einer Fensterfolie anzuordnen.
- Das Fenster wird in diesem Detail auf ein hochdruckfestes Dämmstoffprofil HD 300 der Firma Internorm gestellt.


Detail Nr. 9 - Fensteranschluss seitlich

Fenster			Einh.
Ug		0,500	W/m²K
U _f		0,870	W/m²K
U _w		0,710	W/m²K

Sonstiges

- · Fenster: Internorm ed[it]ion Holz/Alu
- Bei der Überdämmung des Fensterstockes ist die Ausführung in vertikaler und horizontaler Richtung abzustimmen. Eine weniger starke Überdämmung des Fensters in vertikaler Richtung wird in diesem Fall keinen maßgeblichen Effekt auf die bauphysikalischen Ergebnisse haben.
- \bullet Für die Ermittlung des $\psi\textsc{-Wertes}$ wurde die Architekturlichte der Fensterabmessung als Abzugsfläche verwendet.
- Der ψ -Wert kann durch eine Opimierung im Bereich Alu-Außenkante-Fenster deutlich verbessert werden. (siehe Empfehlung \Rightarrow)

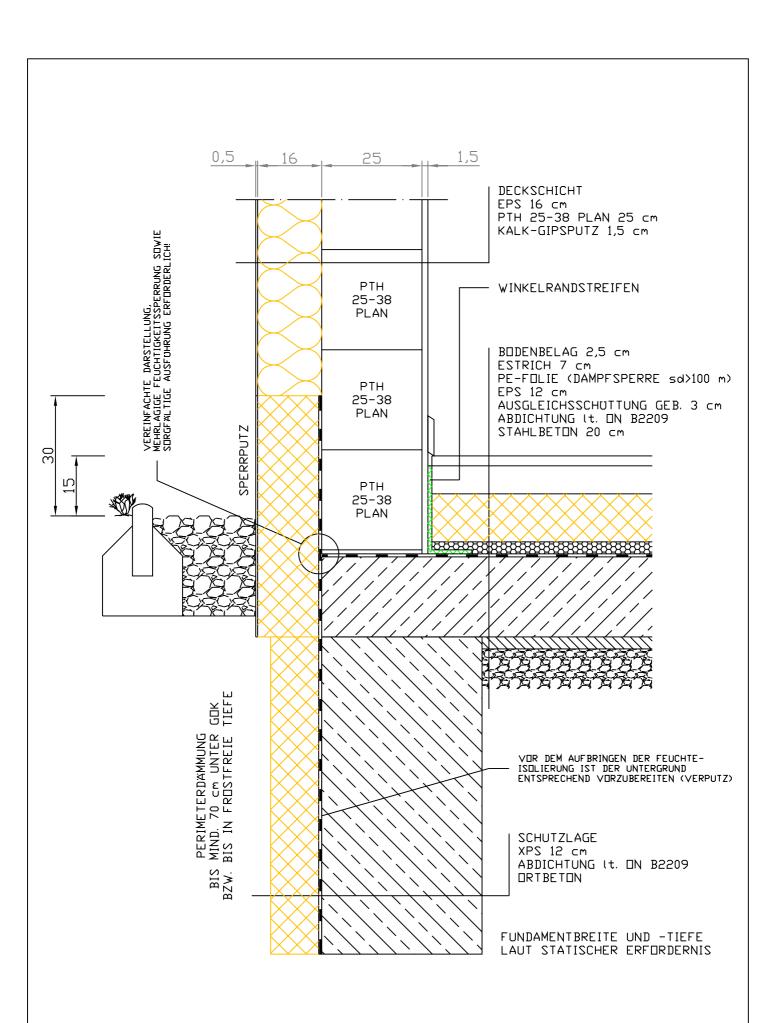
W =	irme	nr	uc	ken

ψ - Wert			Einh
θ_a =		-15,0	K
θ_i =		20,0	K
$\Delta\theta =$		35,0	K
Ψ _{F,SEITLICH} =		0,11	W/mK

Kondensatrisiko

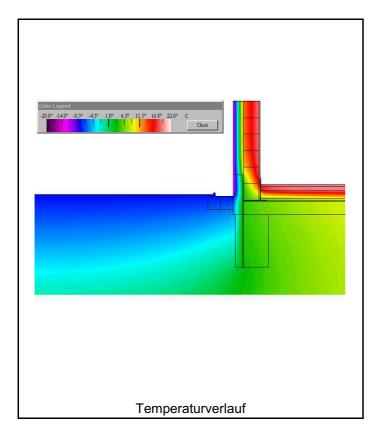
$\theta_{i,s}$ =		16,5	°C
f* _{Rsi} =		0,90	

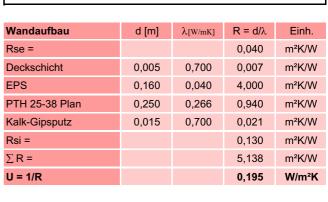
Verarbeitung


• Auf die Luftdichtheit des Fensteranschlusses ist speziell zu achten.

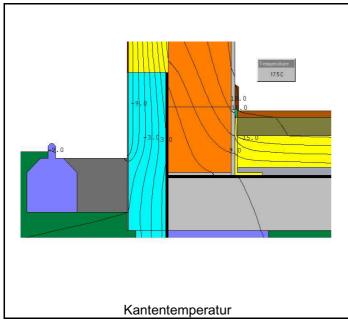
Gemäß ÖNORM B 5320 sind jeweils zwei Dichtungsebenen auszubilden:

- Innenseitig: luftdicht und dampfdicht (z.B. Illbruck Fensterfolie innen)
- Aussenseitig: winddicht und diffusionsoffen (z.B. Vorkomprimiertes Dichtungsband Illmod eco)


Empfehlung


Die bauphysikalischen Werte können deutlich verbessert werden, wenn die Alu-Abdeckung des Fensterrahmens nicht den Ziegelsturz berührt (⇒ Bestellung Schweizer Rahmen oder Anordnung des Fensters weiter außen).

Detail Nr. 1 - Sockelanschluss, nicht unterkellert



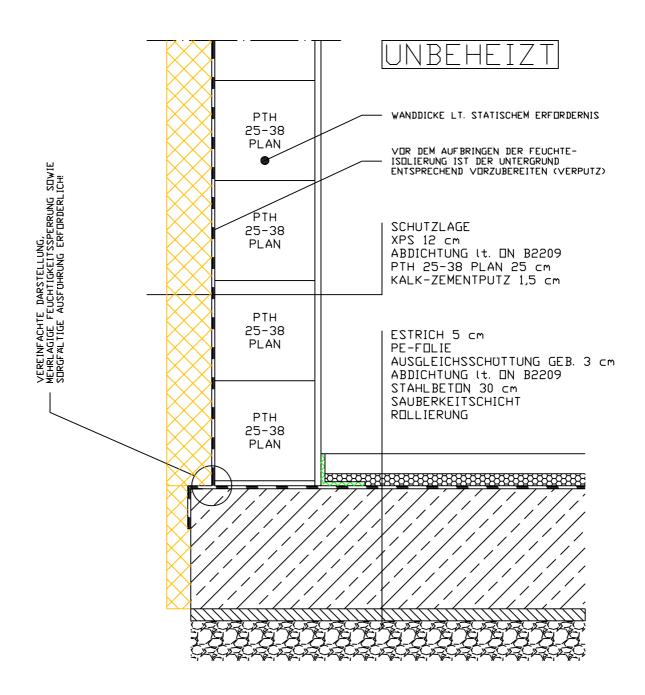
Wärmeschutz

Deckenaufbau	d [m]	$\lambda[W/mK)]$	$R = d/\lambda$	Einh.
Rsi =			0,170	m²K/W
Holzfußboden	0,025	0,160	0,156	m²K/W
Estrich	0,070	1,500	0,047	m²K/W
EPS	0,120	0,040	3,000	m²K/W
Ausgleichsschüttung	0,030	0,700	0,043	m²K/W
Stahlbetondecke	0,200	2,300	0,087	m²K/W
Rse =			0,000	m²K/W
∑R =			3,503	m²K/W
U = 1/R			0,285	W/m²K

Wärmebrücken

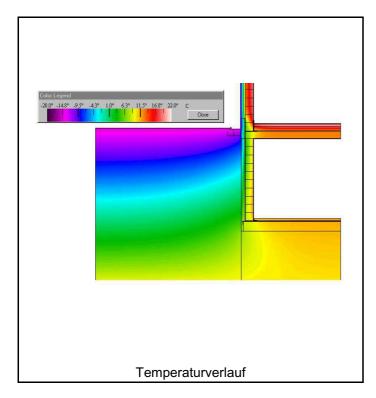
ψ - Wert			Einh
θ_a =		-15,0	K
θ_i =		20,0	K
$\Delta\theta =$		35,0	K
ψ =		0,05	W/mK

Kondensatrisiko

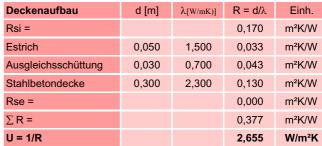

$\theta_{i,s,EG}$ =		17,5	°C
f* _{Rsi} =		0,93	

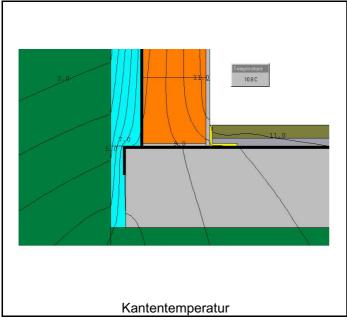
Verarbeitung

- Vor dem Aufbringen der Feuchteisolierung (lt. ÖNORM B 2209) ist der Untergrund entsprechend vorzubereiten (Verputz).
- Die Feuchtigkeitsabdichtungen sind gemäß ÖNORM B 2209 und ÖNORM B 7209 auszuführen.
- Der Innenputz ist bis auf die Oberkante Rohdecke zu führen und mit einer Hohlkehle abzuschließen.
- Bezüglich Estrich sind die ÖNORM B 7232 und ÖNORM B 2232 zu beachten.
- Im Spritzwasserbereich ist auf 16 cm XPS ein spritzwasserfester Sockelputz anzuordnen.


Sonstiges

- Perimeterdämmung 110 cm unter GOK
- Ein spezieller Thermofuß ist bei dem gewählten Konstruktionsaufbau nicht erforderlich.


Detail Nr. 2 - Fundamentanschluss, Keller unbeheizt



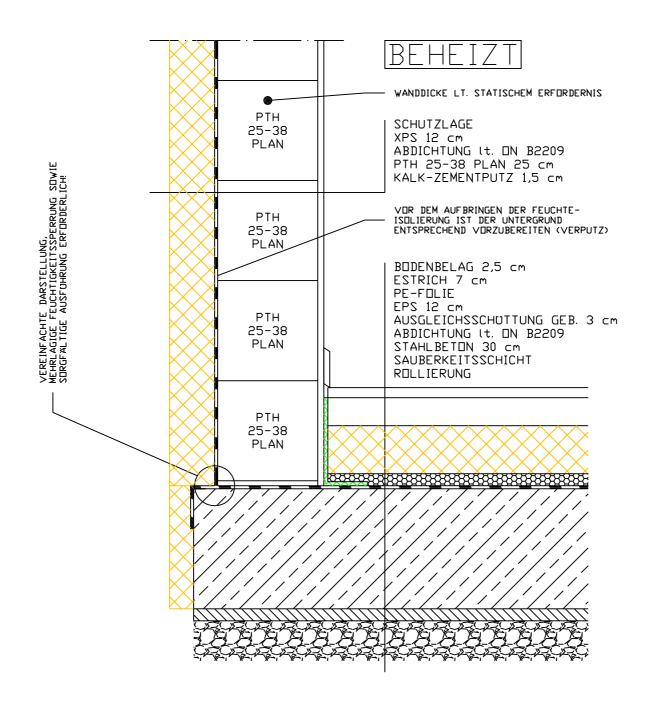
-				
Wandaufbau	d [m]	$\lambda [\text{W/mK}]$	$R = d/\lambda$	Einh.
Rse =			0,000	m²K/W
Deckschicht	0,005	0,700	0,007	m²K/W
XPS	0,120	0,038	3,158	m²K/W
PTH 25-38 Plan	0,250	0,266	0,940	m²K/W
Kalk-Zementputz	0,015	0,700	0,021	m²K/W
Rsi =			0,130	m²K/W
∑R =			4,256	m²K/W
U = 1/R			0,235	W/m²K
Deckenaufbau	d [m]	λ[W/mK)]	$R = d/\lambda$	Einh.

Wärmeschutz

Sonstiges

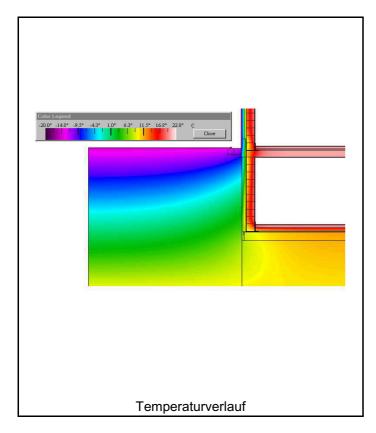
- Unbeheizter Keller mit 12 °C
- Statischer Nachweis für das Kellermauerwerk erforderlich.
- · Eine Variantenstudie hat gezeigt, dass eine Deckendämmung nicht notwendig ist.
- Ein spezieller Thermofuß ist bei dem gewählten Konstruktionsaufbau nicht erforderlich.

*) Die Wärmebrückenkoeffizienten im erdberührten Bereich sind nicht relevant. (siehe Punkt 7)


Wärmebrücken

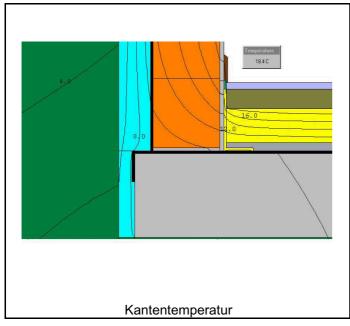
ψ - Wert			Einh
θ_a =		-15,0	K
θ_i =		12,0	K
$\Delta\theta =$		27,0	K
ψ =		*)	W/mK

Kondensatrisiko


$\theta_{i,s,KG}$ =		10,8	°C
f* _{Rei} =		0.74	

- Vor dem Aufbringen der Feuchteisolierung (lt. ÖNORM B 2209) ist der Untergrund entsprechend vorzubereiten (Verputz).
- Die Feuchtigkeitsabdichtungen sind gemäß ÖNORM B 2209 und ÖNORM B 7209 auszuführen.
- Der Innenputz ist bis auf die Oberkante Rohdecke zu führen und mit einer Hohlkehle abzuschließen.
- Bezüglich Estrich sind die ÖNORM B 7232 und ÖNORM B 2232 zu beachten.
- Die Fundamentplatte ist seitlich mit XPS zu dämmen.

Detail Nr. 3 - Fundamentanschluss, Keller beheizt



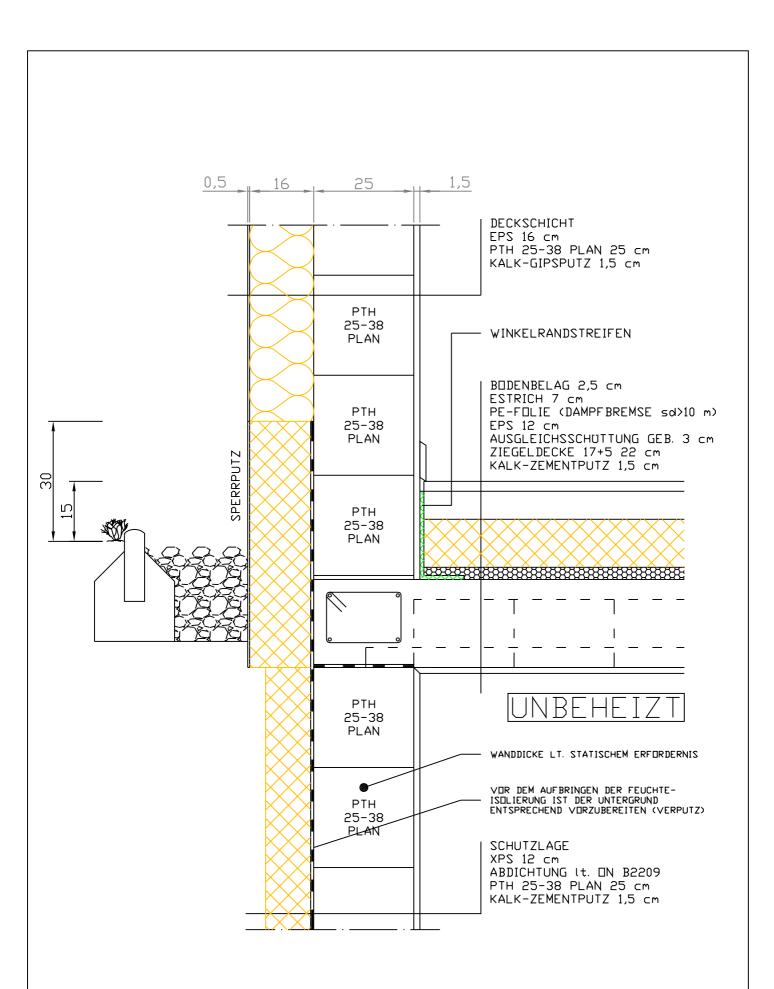
•				
Wandaufbau	d [m]	$\lambda [\text{W/mK}]$	$R = d/\lambda$	Einh.
Rse =			0,000	m²K/W
Deckschicht	0,005	0,700	0,007	m²K/W
XPS	0,120	0,038	3,158	m²K/W
PTH 25-38 Plan	0,250	0,266	0,940	m²K/W
Kalk-Zementputz	0,015	0,700	0,021	m²K/W
Rsi =			0,130	m²K/W
∑R =			4,256	m²K/W
U = 1/R			0,235	W/m²K
Dealesselless	al frant	2	D - 4/	Timb

Wärmeschutz

Deckenaufbau	d [m]	$\lambda[W/mK)]$	$R = d/\lambda$	Einh.
Rsi =			0,170	m²K/W
Holzfußboden	0,025	0,160	0,156	m²K/W
Estrich	0,070	1,500	0,047	m²K/W
EPS	0,120	0,040	3,000	m²K/W
Ausgleichsschüttung	0,030	0,700	0,043	m²K/W
Stahlbetondecke	0,300	2,300	0,130	m²K/W
Rse =			0,000	m²K/W
∑R =			3,546	m²K/W
U = 1/R			0,282	W/m²K

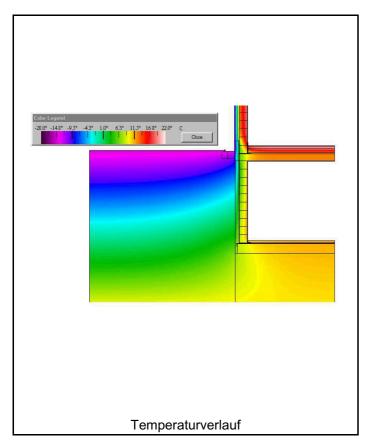
Sonstiges

- Beheizter Keller mit 20 °C
- Statischer Nachweis für das Kellermauerwerk erforderlich.
- *) Die Wärmebrückenkoeffizienten im erdberührten Bereich sind nicht relevant. (siehe Punkt 7)


Wärmebrücken

ψ - Wert			Einh
θ_a =		-15,0	K
θ_i =		20,0	K
$\Delta\theta =$		35,0	K
ψ =		*)	W/mK

Kondensatrisiko


$\theta_{i,s,KG}$ =		18,4	°C
f* _{Rsi} =		0,84	

- Vor dem Aufbringen der Feuchteisolierung (lt. ÖNORM B 2209) ist der Untergrund entsprechend vorzubereiten (Verputz).
- Die Feuchtigkeitsabdichtungen sind gemäß ÖNORM B 2209 und ÖNORM B 7209 auszuführen.
- Der Innenputz ist bis auf die Oberkante Rohdecke zu führen und mit einer Hohlkehle abzuschließen.
- Bezüglich Estrich sind die ÖNORM B 7232 und ÖNORM B 2232 zu beachten.
- Die Fundamentplatte ist seitlich mit XPS zu dämmen.

Detail Nr. 4 - Einbindung Kellerdecke, Keller unbeheizt

Wärmeschutz					
Wandaufbau	d [m]	$\lambda [\text{W/mK}]$	$R = d/\lambda$	Einh.	
Rse =			0,040	m²K/W	
Deckschicht	0,005	0,700	0,007	m²K/W	
EPS	0,160	0,040	4,000	m²K/W	
PTH 25-38 Plan	0,250	0,266	0,940	m²K/W	
Kalk-Gipsputz	0,015	0,700	0,021	m²K/W	
Rsi =			0,130	m²K/W	
∑R =			5,138	m²K/W	
U = 1/R			0,195	W/m²K	
Deckenaufbau	d [m]	$\lambda[W/mK)]$	$R = d/\lambda$	Einh.	
Rsi =			0,170	m²K/W	
Holzfußboden	0,025	0,160	0,156	m²K/W	

0,070

0,120

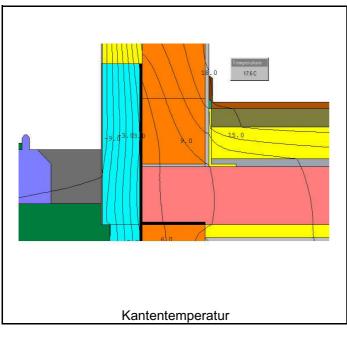
0,030

0,220

0,015

Estrich

Rse =


 $\Sigma R =$

U = 1/R

Ausgleichsschüttung

Ziegeldecke 17+ 5

Kalk-Zementputz

Sonstiges

- Unbeheizter Keller mit 12 °C
- $^{1)}$ Für negative Wärmebrückenkoeffizienten, welche sich aufgrund der Wärmebrückenberechnungen ergeben, ist der Wert von ψ = 0 W/mK für die jeweiligen längenbezogenen Wärmeverluste bei der Berechnung von Energiekennzahlen anzunehmen.

Wärme	

1,500

0,040

0,700

0,700

0,047

3,000

0,043

0,250

0,021

0,170

3.857

0,259

m²K/W

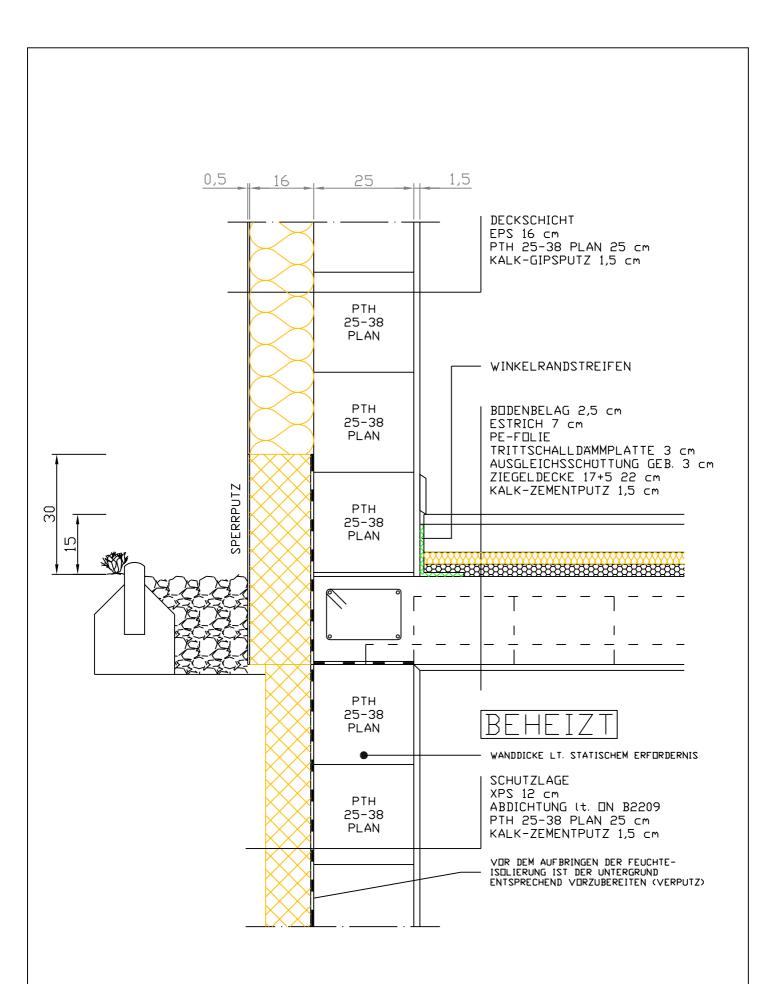
m²K/W

m²K/W

m²K/W

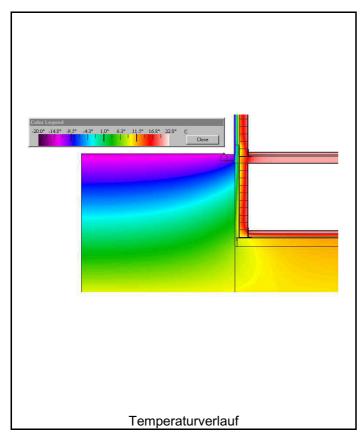
m²K/W m²K/W

m²K/W

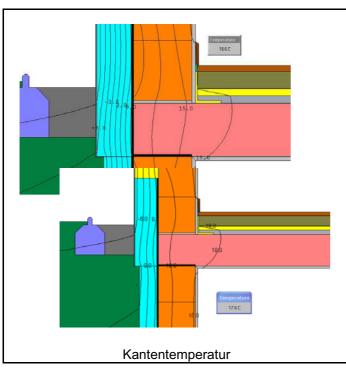

W/m²K

ψ - Wert			Einh
θ_a =		-15,0	K
θ_i =		20,0	K
$\Delta\theta =$		35,0	K
ψ =		0 ¹⁾	W/mK

Kondensatrisiko


$\theta_{i,s,EG}$ =		17,6	°C
f* _{Pei} =		0.93	

- Vor dem Aufbringen der Feuchteisolierung (lt. ÖNORM B 2209) ist der Untergrund entsprechend vorzubereiten (Verputz).
- Die Feuchtigkeitsabdichtungen sind gemäß ÖNORM B 2209 und ÖNORM B 7209 auszuführen.
- Der Innenputz ist bis auf die Oberkante Rohdecke zu führen und mit einer Hohlkehle abzuschließen.
- Bezüglich Estrich sind die ÖNORM B 7232 und ÖNORM B 2232 zu beachten.
- Im Spritzwasserbereich ist XPS mit einem Sperrputz anzuordnen.



Detail Nr. 5 - Einbindung Kellerdecke, Keller beheizt

Wärmeschutz					
Wandaufbau	d [m]	$\lambda [\text{W/mK}]$	$R = d/\lambda$	Einh.	
Rse =			0,040	m²K/W	
Deckschicht	0,005	0,700	0,007	m²K/W	
EPS	0,160	0,040	4,000	m²K/W	
PTH 25-38 Plan	0,250	0,266	0,940	m²K/W	
Kalk-Gipsputz	0,015	0,700	0,021	m²K/W	
Rsi =			0,130	m²K/W	
∑R =			5,138	m²K/W	
U = 1/R			0,195	W/m²K	
Deckenaufbau	d [m]	$\lambda[W/mK)]$	$R = d/\lambda$	Einh.	
Rsi =			0,100	m²K/W	
Holzfußboden	0,025	0,160	0,156	m²K/W	
Estrich	0,070	1,500	0,047	m²K/W	
Trittschalldämmplatte	0,030	0,040	0,750	m²K/W	

Sonstiges

- Beheizter Keller mit 20 °C
- Statischer Nachweis für das Kellermauerwerk erforderlich.

Wärmebrücken

0,030

0,220

0,015

Ausgleichsschüttung

Ziegeldecke 17+ 5

Kalk-Zementputz

Rse =

 $\Sigma R =$

U = 1/R

0,700

0,700

0,043

0,250

0,021

0,100

1,467

0,682

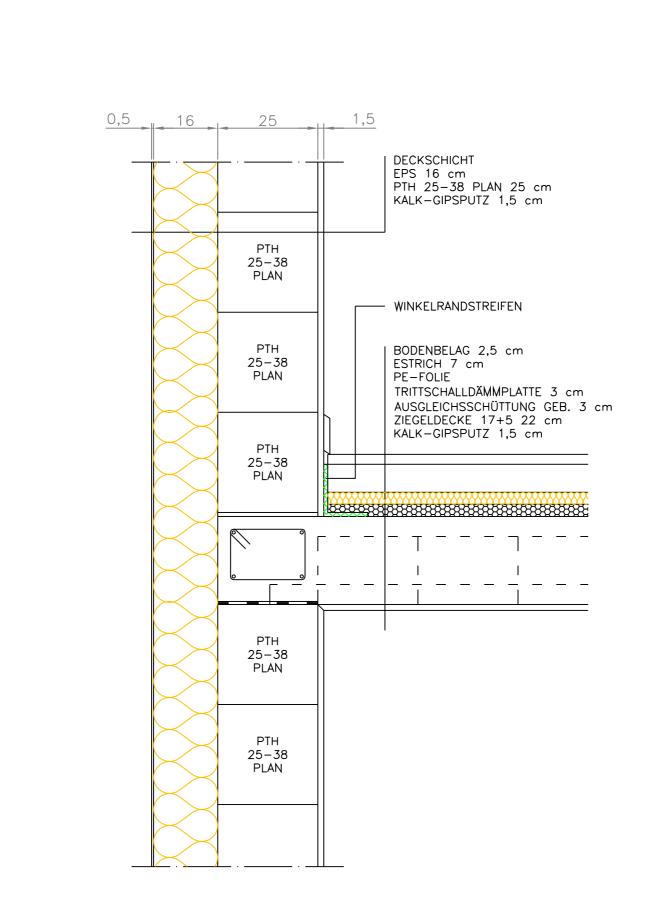
m²K/W

 m^2K/W

 m^2K/W

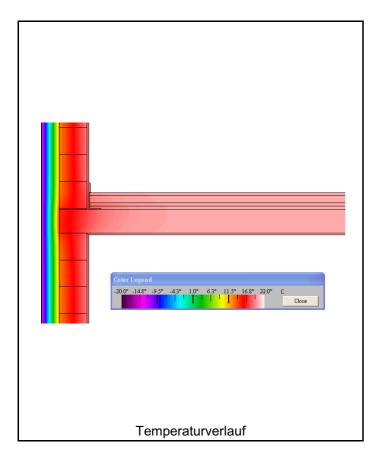
m²K/W

m²K/W

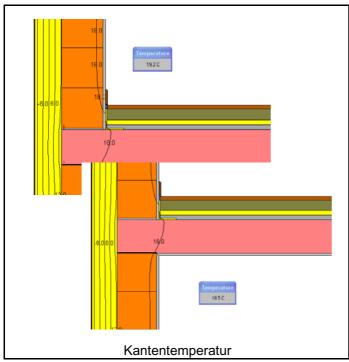

W/m²K

ψ - Wert		Einh
θ_a =	-15,0	K
$\Theta_i =$	20,0	K
$\Delta\theta =$	35,0	K
ψ =	0,01	W/mK

Kondensatrisiko


$\theta_{i,s,FB}$ =	18,6	°C
f* _{Rsi} =	0,96	
$\theta_{i,s,DE}$ =	17,6	°C
f* p =	0.93	

- Vor dem Aufbringen der Feuchteisolierung (It. ÖNORM B 2209 ist der Untergrund entsprechend vorzubereiten (Verputz).
- Die Feuchtigkeitsabdichtungen sind gemäß ÖNORM B 2209 und ÖNORM B 7209 auszuführen.
- Der Innenputz ist bis auf die Oberkante Rohdecke zu führen und mit einer Hohlkehle abzuschließen.
- Bezüglich Estrich sind die ÖNORM B 7232 und ÖNORM B 2232 zu beachten.
- Im Spritzwasserbereich ist XPS mit einem Sperrputz anzuordnen.



Detail Nr. 6 - Einbindung Zwischengeschoßdecke

Wärmeschutz						
Wandaufbau	d [m]	$\lambda [\text{W/mK}]$	$R = d/\lambda$	Einh.		
Rse =			0,040	m²K/W		
Deckschicht	0,005	0,700	0,007	m²K/W		
EPS	0,160	0,040	4,000	m²K/W		
PTH 25-38 Plan	0,250	0,266	0,940	m²K/W		
Kalk-Gipsputz	0,015	0,700	0,021	m²K/W		
Rsi =			0,130	m²K/W		
$\Sigma R =$			5,138	m²K/W		
U = 1/R			0,195	W/m²K		
Deckenaufbau	d [m]	$\lambda[W/mK)]$	$R = d/\lambda$	Einh.		
Rsi =			0,100	m²K/W		
Holzfußboden	0,025	0,160	0,156	m²K/W		
Estrich	0,070	1,500	0,047	m²K/W		
Trittschalldämmplatte	0,030	0,040	0,750	m²K/W		
Ausgleichsschüttung	0,030	0,700	0,043	m²K/W		
Ziegeldecke 17+ 5	0,220		0,250	m²K/W		
Kalk-Zementputz	0,015	0,700	0,021	m²K/W		
Rse =			0,100	m²K/W		
∑R =			1,467	m²K/W		

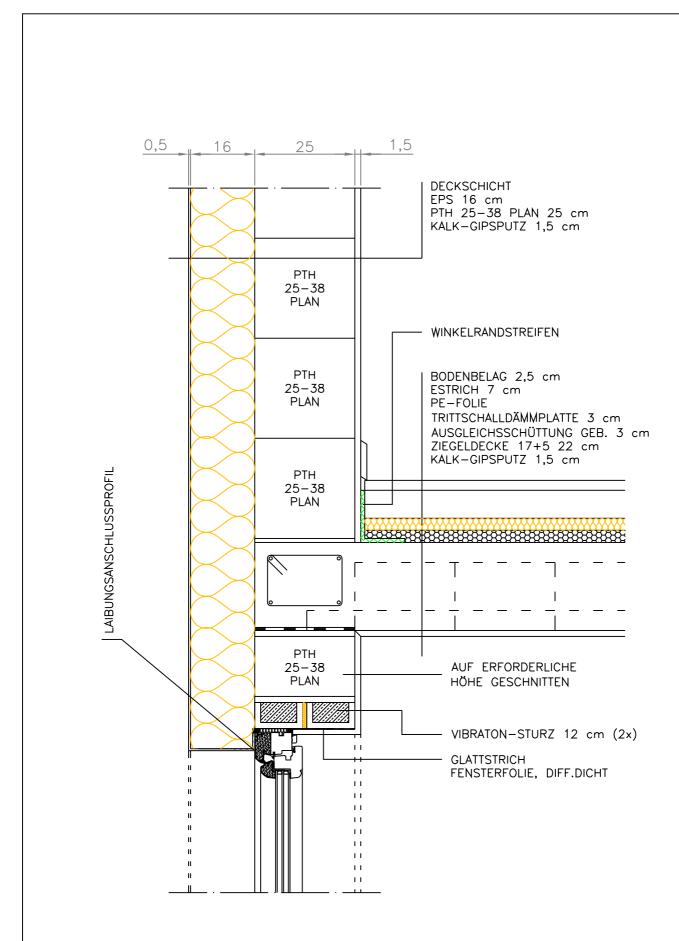
Sonstiges

• Berechnungsergebnisse ohne Fenstereinfluss

Wärmebrücke	

0,682

W/m²K

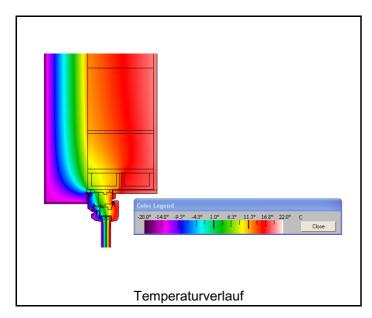

U = 1/R

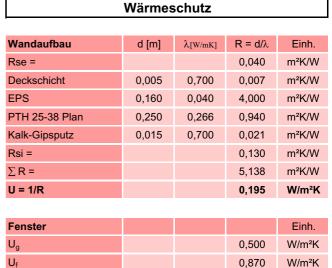
ψ - Wert		Einh
θ_a =	-15,0	K
θ_i =	20,0	K
$\Delta\theta =$	35,0	K
ΨzgD =	0,006	W/mK

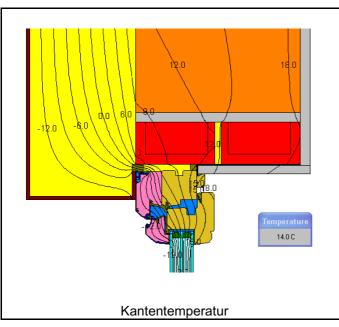
Kondensatrisiko

$\theta_{i,s,FB}$ =		19,2	°C
f* _{Rsi} =		0,98	
$\theta_{i,s,DE}$ =		18,5	°C
f* _{Rsi} =		0,96	

- Der Innenputz ist bis auf die Oberkante Rohdecke zu führen und mit einer Hohlkehle abzuschließen.
- Bezüglich Estrich sind die ÖNORM B 7232 und ÖNORM B 2232 zu beachten.




Detail Nr. 7 - Fensteranschluss oben



0,710

W/m²K

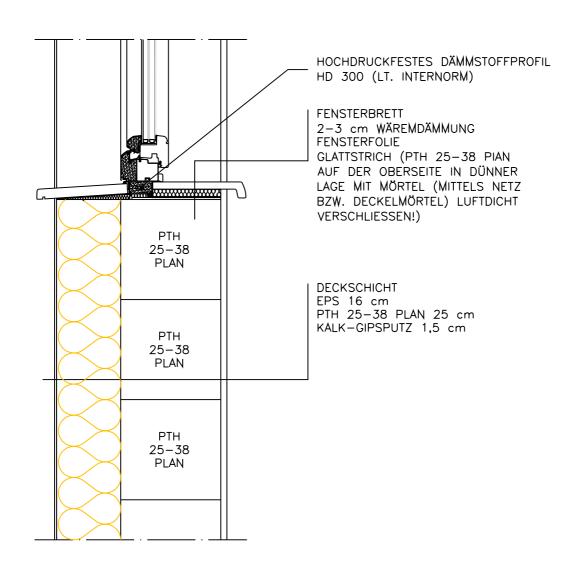
14/		_		
W:	ärm	ehr!	uck	(An

ψ - Wert			Einh
θ_a =		-15,0	K
θ_i =		20,0	K
$\Delta\theta$ =		35,0	K
Ψ _{F,OBEN} =		0,15	W/mK

Kondensatrisiko

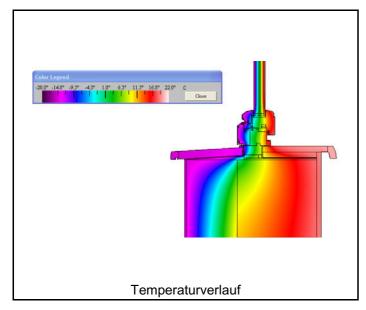
$\theta_{i,s}$ =	14,0	°C
f* _{Rsi} =	0,83	

Verarbeitung

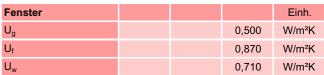

- Auf die Luftdichtheit des Fensteranschlusses ist speziell zu achten.
- Gemäß ÖNORM B 5320 sind jeweils zwei Dichtungsebenen auszubilden:
- Innenseitig: luftdicht und dampfdicht (z.B. Illbruck Fensterfolie innen)
- Aussenseitig: winddicht und diffusionsoffen (z.B. Vorkomprimiertes Dichtungsband Illmod eco)

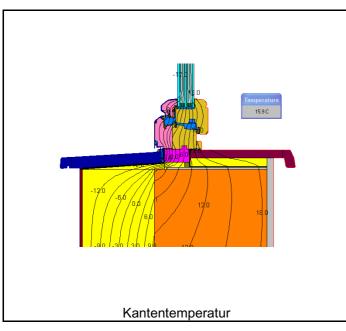
Sonstiges

- Fenster: Internorm ed[it]ion Holz/Alu
- Bei der Überdämmung des Fensterstockes ist die Ausführung in vertikaler und horizontaler Richtung abzustimmen. Eine weniger starke Überdämmung des Fensters in vertikaler Richtung wird in diesem Fall keinen maßgeblichen Effekt auf die bauphysikalischen Ergebnisse haben.
- Berechnungsergebnisse ohne Einfluss der Zwischengeschossdecke
- Für die Ermittlung des ψ-Wertes wurde die Architekturlichte der Fensterabmessung als Abzugsfläche verwendet
- Der ψ -Wert kann durch eine Opimierung im Bereich Alu-Außenkante-Fenster deutlich verbessert werden. (siehe Empfehlung \Rightarrow)


Empfehlung

Die bauphysikalischen Werte können deutlich verbessert werden, wenn die Alu-Abdeckung des Fensterrahmens nicht den Ziegelsturz berührt (⇒ Bestellung Schweizer Rahmen oder Anordnung des Fensters weiter außen).



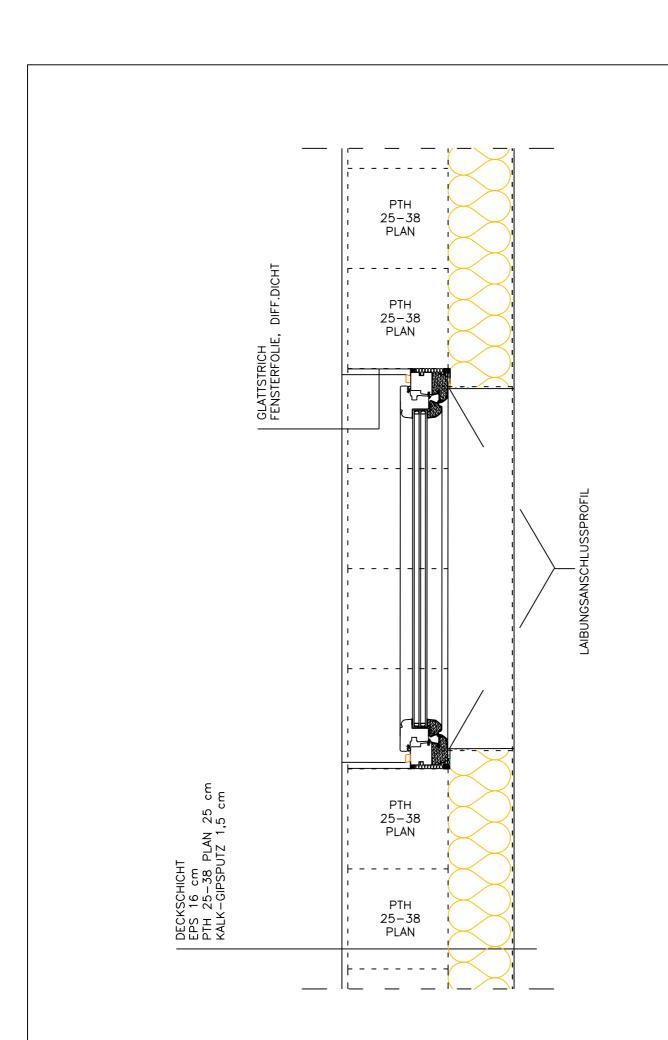


Wandaufbau	d [m]	$\lambda [\text{W/mK}]$	$R = d/\lambda$	Einh.
Rse =			0,040	m²K/W
Deckschicht	0,005	0,700	0,007	m²K/W
EPS	0,160	0,040	4,000	m²K/W
PTH 25-38 Plan	0,250	0,266	0,940	m²K/W
Kalk-Gipsputz	0,015	0,700	0,021	m²K/W
Rsi =			0,130	m²K/W
∑R =			5,138	m²K/W
U = 1/R			0,195	W/m²K

Wärmeschutz

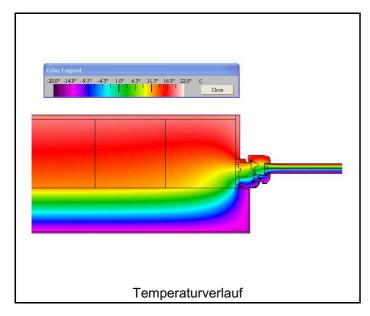
Sonstiges

- Fenster: Internorm ed[it]ion Holz/Alu
- \bullet Für die Ermittlung des $\psi\textsc{-Wertes}$ wurde die Architekturlichte der Fensterabmessung als Abzugsfläche verwendet.

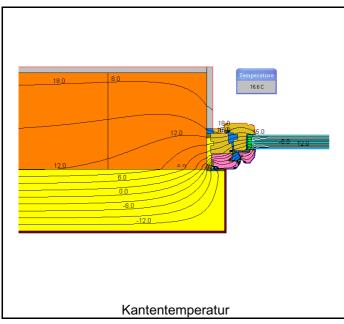

		••	
war	meb	ruc	ken

ψ - Wert			Einh
θ_a =		-15,0	K
θ_i =		20,0	K
$\Delta\theta =$		35,0	K
Ψ _{F,UNTEN} =		0,12	W/mK

Kondensatrisiko


$\theta_{i,s}$ =		15,9	°C
f* _{Rsi} =		0,88	

- Auf die Luftdichtheit des Fensteranschlusses ist speziell zu achten.
- Gemäß ÖNORM B 5320 sind jeweils zwei Dichtungsebenen auszubilden:
- Innenseitig: luftdicht und dampfdicht (z.B. Illbruck Fensterfolie innen)
- Aussenseitig: winddicht und diffusionsoffen (z.B. Vorkomprimiertes Dichtungsband Illmod eco)
- Die Mauerkrone des Parapetes ist durch eine vollflächig deckende Mörtelschicht zu verschließen (bei Planziegel-System: 1 mm).
- Das Fensterbrett ist auf 2-3 cm Wärmedämmung und einer Fensterfolie anzuordnen.
- Das Fenster wird in diesem Detail auf ein hochdruckfestes Dämmstoffprofil HD 300 der Firma Internorm gestellt.



77411100011412					
		•	•		
Wandaufbau	d [m]	$\lambda [\text{W/mK}]$	$R = d/\lambda$	Einh.	
Rse =			0,040	m²K/W	
Deckschicht	0,005	0,700	0,007	m²K/W	
EPS	0,160	0,040	4,000	m²K/W	
PTH 25-38 Plan	0,250	0,266	0,940	m²K/W	
Kalk-Gipsputz	0,015	0,700	0,021	m²K/W	
Rsi =			0,130	m²K/W	
∑R =			5,138	m²K/W	
U = 1/R			0,195	W/m²K	
Fenster				Einh.	
U _g			0,500	W/m²K	
U _f			0,870	W/m²K	
H			0.710	\\//m²k′	

Wärmeschutz

Sonstiges

- Fenster: Internorm ed[it]ion Holz/Alu
- Bei der Überdämmung des Fensterstockes ist die Ausführung in vertikaler und horizontaler Richtung abzustimmen. Eine weniger starke Überdämmung des Fensters in vertikaler Richtung wird in diesem Fall keinen maßgeblichen Effekt auf die bauphysikalischen Ergebnisse haben.
- \bullet Für die Ermittlung des $\psi\textsc{-Wertes}$ wurde die Architekturlichte der Fensterabmessung als Abzugsfläche verwendet.

14/::	_		•	
Wärm	еh	ru	cken	

ψ - Wert		Einh
θ_a =	-1	15,0 K
θ_i =	2	20,0 K
$\Delta\theta =$	3	5,0 K
Ψ _{F,SEITLICH} =	0	,09 W/mK

Kondensatrisiko

$\theta_{i,s}$ =		16,6	°C
f* _{Rsi} =		0,90	

- Auf die Luftdichtheit des Fensteranschlusses ist speziell zu achten.
- Gemäß ÖNORM B 5320 sind jeweils zwei Dichtungsebenen auszubilden:
- Innenseitig: luftdicht und dampfdicht (z.B. Illbruck Fensterfolie innen)
- Aussenseitig: winddicht und diffusionsoffen (z.B. Vorkomprimiertes Dichtungsband Illmod eco)