Leitfaden zur Berücksichtigung von Umweltbelangen bei der Planung von PV-Freiflächenanlagen

STAND 28.11.2007

Bearbeitung durch
ARGE Monitoring PV-Anlagen

Im Auftrag des
Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit
Auftraggeber: Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit
Referat Z III 2
10178 Berlin

Auftragnehmer: ARGE Monitoring PV-Anlagen
c/o Bosch & Partner GmbH
Lister Damm 1
30163 Hannover

Mitglieder der ARGE
Bosch & Partner GmbH
Lister Damm 1
30163 Hannover
Zentrum für Sonnenenergie- und Wasserstoff-Forschung
Baden-Württemberg
Industriestr. 6
70565 Stuttgart
Solar Engineering Decker & Mack GmbH
Vahrenwalder Str. 7
30165 Hannover
Institut für Energetik und Umwelt gGmbH
Torgauer Str. 116
04347 Leipzig
Rechtsanwaltskanzlei Bohl & Coll
Franz-Ludwig-Straße 9
D-97072 Würzburg

Bearbeitung des Leitfadens
Dr. Dieter Günnewig               Bosch & Partner
Dipl.-Ing. Annette Sieben         Bosch & Partner
Dipl.-Ing. Michael Püschel        Bosch & Partner
RA Johannes Bohl                  Bohl & Coll
Dr. Michael Mack                  Solar Engineering

Hannover, den 27.11.2007
# Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Seite</th>
<th>Einleitung ..........................................................................................................</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Charakterisierung von PV-Freiflächenanlagen ........................................................................</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Anlagentechnik ....................................................................................................................</td>
<td>5</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Solarzellen / Module ..........................................................................................................</td>
<td>5</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Bauweise ..................................................................................................................................</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Flächenbedarf ........................................................................................................................</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Größe und Höhe der Anlagen ...................................................................................................</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>Lage und Vornutzung .............................................................................................................</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Wirkungsprofil des Vorhabentyps ............................................................................................</td>
<td>14</td>
</tr>
<tr>
<td>3.1</td>
<td>Mögliche Wirkfaktoren von PV-Freiflächenanlagen ..................................................................</td>
<td>14</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Baubedingte Projektwirkungen ...............................................................................................</td>
<td>15</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Anlagebedingte Projektwirkungen ..........................................................................................</td>
<td>16</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Betriebsbedingte Projektwirkungen .......................................................................................</td>
<td>20</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Tabellarische Übersicht / Checkliste zur Darstellung der Wirkungen ................................</td>
<td>22</td>
</tr>
<tr>
<td>3.2</td>
<td>Bewertung möglicher Umweltauswirkungen von PV-Freiflächenanlagen ..................................</td>
<td>23</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Pflanzen ..................................................................................................................................</td>
<td>23</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Tiere .......................................................................................................................................</td>
<td>25</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Boden ......................................................................................................................................</td>
<td>30</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Wasser ....................................................................................................................................</td>
<td>30</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Klima/Luft .............................................................................................................................</td>
<td>31</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Landschaft / Landschaftsbild .................................................................................................</td>
<td>32</td>
</tr>
<tr>
<td>3.2.7</td>
<td>Menschen einschließlich der menschlichen Gesundheit .........................................................</td>
<td>34</td>
</tr>
<tr>
<td>3.2.8</td>
<td>Kultur- und sonstige Sachgüter ...............................................................................................</td>
<td>37</td>
</tr>
<tr>
<td>3.2.9</td>
<td>Übersicht / Checkliste zu möglichen Beeinträchtigungen ......................................................</td>
<td>38</td>
</tr>
<tr>
<td>4</td>
<td>Kriterien für die Standortwahl / Standortsteuerung .................................................................</td>
<td>42</td>
</tr>
<tr>
<td>4.1</td>
<td>Freiflächenkriterien des EEG - Koppelung der Vergütung an die vorherige Flächennutzung ....</td>
<td>42</td>
</tr>
<tr>
<td>4.2</td>
<td>Energiewirtschaftliche Aspekte bei der Standortplanung ........................................................</td>
<td>44</td>
</tr>
<tr>
<td>4.3</td>
<td>Naturschutzfachliche Aspekte bei der Standortwahl ...............................................................</td>
<td>44</td>
</tr>
</tbody>
</table>
Leitfaden zur Berücksichtigung von Umweltbelangen bei der Planung von PV-Freiflächenanlagen

Inhaltsverzeichnis

5 Planung und Zulassung von PV-Freiflächenanlagen ........................................ 50
  5.1 Räumliche Steuerung ..................................................................................... 50
  5.1.1 Steuerung durch die Raumordnung ............................................................ 50
  5.1.2 Standortsteuerung in der Bauleitplanung ................................................... 52
  5.1.3 Bedeutung der Landschaftsplanung bei der Standortsteuerung .................. 53
  5.2 Genehmigungsverfahren .............................................................................. 54
  5.3 Bauleitplanung für PV-Freiflächenanlagen .................................................. 55
  5.4 Rückbauregelungen ..................................................................................... 58
  5.5 Berücksichtigung von Natur und Landschaft in Verfahren nach BauGB ........ 59
  5.5.1 Bodenschutzklausel ............................................................................... 59
  5.5.2 Eingriffsregelung in der Bauleitplanung ................................................... 60
  5.5.3 Bindende naturschutzrechtliche Vorgaben (Schutzgebiete, gesetzlich geschützte Biotope, Artenschutz) .......................................................... 60
  5.5.4 FFH-Gebiete und europäische Vogelschutzgebiete ................................... 61

6 Umweltprüfung in der Bauleitplanung ............................................................. 62
  6.1 Gesetzliche Grundlage ............................................................................... 62
  6.2 Aufgabe und Inhalt der Umweltprüfung ...................................................... 62
  6.3 Integration von Eingriffsregelung, FFH-Verträglichkeitsprüfung und speziellem Artenschutz in die Umweltprüfung und den Umweltbericht ......................... 68

7 Arbeitsschritte zur Eingriffsregelung in der Bauleitplanung .............................. 71
  7.1 Festlegen des Untersuchungsrahmens ........................................................ 74
  7.2 Erfassen und Bewerten von Naturhaushalt und Landschaftsbild .................. 77
  7.3 Prognostizieren der Beeinträchtigungen / Konfliktanalyse .............................. 78
  7.4 Entwickeln von Vorkehrungen zur Vermeidung und Minderung von Beeinträchtigungen ................................................................. 78
  7.5 Entwickeln von Maßnahmen zur Kompensation ........................................... 81
  7.6 Erstellen einer Eingriffs-Kompensations-Bilanz ............................................ 85

8 Hinweise zur Gestaltung von PV-Freiflächenanlagen ....................................... 86
  8.1 Anforderungen an die Gestaltung einer PV-Freiflächenanlage ....................... 86
  8.2 Hinweise zur Herstellung, Unterhaltung und Pflege von Maßnahmenflächen .. 88
  8.2.1 Anpflanzungen ........................................................................................ 88
  8.2.2 Grünland ................................................................................................. 89

27.11.2007 II
# Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3</td>
<td>Sichern von Flächen und Maßnahmen zur Vermeidung, Verminderung und Kompensation von Beeinträchtigungen im Zusammenhang mit der Planung einer PV-Freiflächenanlage</td>
<td>92</td>
</tr>
<tr>
<td>9</td>
<td>Recycling / Rückbau</td>
<td>95</td>
</tr>
<tr>
<td>9.1</td>
<td>Recycling der Module</td>
<td>95</td>
</tr>
<tr>
<td>9.2</td>
<td>Rückbau der Anlagen</td>
<td>95</td>
</tr>
<tr>
<td>10</td>
<td>Literatur- und Quellenverzeichnis</td>
<td>97</td>
</tr>
<tr>
<td>11</td>
<td>Anhang</td>
<td>101</td>
</tr>
</tbody>
</table>
Leitfaden zur Berücksichtigung von Umweltbelangen bei der Planung von PV-Freiflächenanlagen

Inhaltsverzeichnis

0.1 Anhangsverzeichnis

Anhang 1: Gesetz für den Vorrang Erneuerbarer Energien (Erneuerbare-Energien-Gesetz – EEG) § 11

Anhang 2: Verfahrensablauf bei der Bebauungsplanung mit Umweltprüfung

Anhang 3: Gliederung eines Bebauungsplanes mit integriertem Grünordnungsplan und Umweltbericht

Anhang 4: Auswahl der Tierarten- bzw. Tierartengruppen

Anhang 5: Zusammenstellung von Arbeitshilfen, Normen und Richtlinien für die Bauleitplanung auf Landesebene

Anhang 6: Zielkonzept Maßnahmenplanung

0.2 Abbildungsverzeichnis

Abb. 1-1: Übersicht zum Aufbau des Leitfadens.................................................................2
Abb. 2-1: Gegenüberstellung verschiedener Anlagetypen.................................................7
Abb. 2-2: Beispiel für die Verlegung der Kabel im Kabelgraben .......................................9
Abb. 3-1: Schutzzaun mit Sockelmauer – Entzug von Lebensräumen und Barrierewirkung.................................................................19
Abb. 3-2: Visuelle Wirkung von PV-Freiflächenanlagen..................................................34
Abb. 6-1: Die Umweltprüfung in der Bauleitplanung .....................................................63
Abb. 6-2: Die praktische Abwicklung der Umweltprüfung .................................................64
Abb. 7-1: Vorgehensweise bei der Eingriffsregelung ........................................................73
Abb. 8-1: Beispielhafte Eingrünung einer PV-Freiflächenanlage .....................................87
Abb. 11-1: Gliederung eines Bebauungsplanes mit integriertem Grünordnungsplan und Umweltbericht.................................................................104
Abb. 11-2: Ableitung von Zielen des Kompensationskonzeptes ......................................115

27.11.2007 IV
Leitfaden zur Berücksichtigung von Umweltbelangen bei der Planung von PV-Freiflächenanlagen

ARGE Monitoring PV-Anlagen
Inhaltsverzeichnis

0.3 Tabellenverzeichnis

Tab. 2-1: Ertragsbezogene spezifische Aufstellfläche von PV-Freiflächenanlagen mit polykristallinen Waferzellen .................................................................10
Tab. 2-2: Mittlere spezifische Flächen der Aufstellvarianten bei realisierten Photovoltaik-Freiflächenanlagen In Deutschland 2001 bis 2006..............................11
Tab. 3-1: Generelle Wirkfaktoren bei Photovoltaik-Freiflächenanlagen ...............14
Tab. 3-2: Mögliche Wirkfaktoren von PV-Freiflächenanlagen ................................22
Tab. 3-3: Mögliche Beeinträchtigungen der Schutzgüter durch PV-Freiflächenanlagen 38
Tab. 4-1: Technische und wirtschaftliche Kriterien bei der Planung von PV-Freiflächenanlagen .................................................................44
Tab. 4-2: Bereiche mit geringem Konfliktpotenzial (Eignungsbereiche) ..................45
Tab. 4-3: Empfohlene Ausschlussbereiche (Restriktionsbereiche) .........................48
Tab. 6-1: Notwendige Inhalte des Umweltberichtes .........................................65
Tab. 6-2: Fallbeispiel – Prognose über die Entwicklung des Umweltzustandes bei Durchführung und Nichtdurchführung eines PV-Freiflächenvorhabens ........67
Tab. 7-1: Hinweise zu faunistischen Untersuchungen bei PV-Freiflächenanlagen auf Ackerstandorten oder Konversionsflächen ........................................75
Tab. 7-2: Hinweise zu möglichen Vermeidungs- / Minimierungsmaßnahmen auf der Ebene der Bebauungsplanung .........................................................80
Tab. 7-3: Mögliche Kompensationsmaßnahmen für Beeinträchtigungen von Pflanzen und Tieren, Boden und Landschaftsbild durch den Bau einer PV-Freiflächenanlage ...........................................................................................................84
Tab. 8-1: Vergleichende Betrachtung von Beweidung und Mahd als Instrumente zur Offenhaltung von PV-Freiflächenanlagen ........................................91
Tab. 8-2: Auswahl von Darstellungs-, Festsetzungs- und weiteren Regelungsmöglichkeiten in der Bauleitplanung zur Unterstützung von Vermeidungs- und Kompensationszielen im Zusammenhang mit der Planung von PV-Freiflächenanlagen .................................................................93
Tab. 11-1: Verfahrensablauf bei der Bebauungsplanung mit Umweltprüfung ..........103
Tab. 11-2: Eignung von Tierartengruppen zur Beantwortung typischer planerischer Fragestellungen ..............................................................................106
Tab. 11-3: Informationswert von Artengruppen in Bezug auf Lebensraumtypen ....107
0.4 Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_gr</td>
<td>Grundfläche</td>
</tr>
<tr>
<td>AM</td>
<td>Air Mass (Der Faktor gibt an, wie lang der Weg der Sonnenstrahlung durch die Erdatmosphäre ist und wird im Verhältnis zur Atmosphärendicke angegeben.)</td>
</tr>
<tr>
<td>A_mod</td>
<td>Modulfläche</td>
</tr>
<tr>
<td>ARGE</td>
<td>Arbeitsgemeinschaft</td>
</tr>
<tr>
<td>a-Si</td>
<td>amorphes Silizium</td>
</tr>
<tr>
<td>BauGB</td>
<td>Baugesetzbuch</td>
</tr>
<tr>
<td>BauNVO</td>
<td>Baunutzungsverordnung</td>
</tr>
<tr>
<td>BBodSchG</td>
<td>Gesetz zum Schutz vor schädlichen Bodenveränderungen und zur Sanierung von Altlasten (Bundes-Bodenschutzgesetz)</td>
</tr>
<tr>
<td>BImSchV</td>
<td>Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes</td>
</tr>
<tr>
<td>BNatSchG</td>
<td>Bundesnaturschutzgesetz</td>
</tr>
<tr>
<td>B-Plan</td>
<td>Bebauungsplan</td>
</tr>
<tr>
<td>BR</td>
<td>Biosphärenreservat</td>
</tr>
<tr>
<td>CdTe</td>
<td>Cadmium-Tellurid</td>
</tr>
<tr>
<td>EAG</td>
<td>Europarechtsanpassungsgesetz</td>
</tr>
<tr>
<td>EE</td>
<td>erneuerbare Energien</td>
</tr>
<tr>
<td>EEG</td>
<td>Gesetz für den Vorrang Erneuerbarer Energien (Erneuerbare-Energien-Gesetz)</td>
</tr>
<tr>
<td>EVU</td>
<td>Energieversorgungsunternehmen</td>
</tr>
<tr>
<td>FFH</td>
<td>Fauna-Flora-Habitat</td>
</tr>
<tr>
<td>FFH-RL</td>
<td>Fauna-Flora-Habitat-Richtlinie</td>
</tr>
<tr>
<td>FFH-VP</td>
<td>Fauna-Flora-Habitat-Verträglichkeitsprüfung</td>
</tr>
<tr>
<td>FNF</td>
<td>Flächennutzungsfaktor (Verhältnis aus Modulfläche zu Grundfläche)</td>
</tr>
<tr>
<td>kWp</td>
<td>Kilowatt peak</td>
</tr>
<tr>
<td>LP</td>
<td>Landschaftsplan</td>
</tr>
<tr>
<td>LRP</td>
<td>Landschaftsrahmenplan</td>
</tr>
<tr>
<td>LSG</td>
<td>Landschaftsschutzgebiet</td>
</tr>
<tr>
<td>MWh</td>
<td>Megawattstunde(n)</td>
</tr>
<tr>
<td>MWp</td>
<td>Megawatt peak</td>
</tr>
<tr>
<td>ND</td>
<td>Naturdenkmal</td>
</tr>
<tr>
<td>NP</td>
<td>Nationalpark</td>
</tr>
<tr>
<td>NSG</td>
<td>Naturschutzgebiet</td>
</tr>
<tr>
<td>PV-FFA</td>
<td>Photovoltaik-Freiflächenanlage</td>
</tr>
<tr>
<td>TÖB</td>
<td>Träger öffentlicher Belange</td>
</tr>
<tr>
<td>UVP</td>
<td>Umweltverträglichkeitsprüfung</td>
</tr>
<tr>
<td>UVPG</td>
<td>Gesetz über die Umweltverträglichkeitsprüfung</td>
</tr>
<tr>
<td>VRL</td>
<td>Vogelschutzrichtlinie</td>
</tr>
<tr>
<td>Wp</td>
<td>Watt peak</td>
</tr>
</tbody>
</table>

27.11.2007
1 Einleitung


Um möglichen Umweltbeeinträchtigungen entgegenzuwirken, hat der Gesetzgeber die Vergütung von Strom aus Freiflächenanlagen an verschiedene Voraussetzungen gekoppelt. Damit soll eine naturschutzbezogene Steuerung der Auswahl unbebauter Flächen ermöglicht werden. Dieses System der Voraussetzungen ist in § 11 Abs. 3 und Abs. 4 EEG dreistufig ausgestaltet:

- Ohne weitere Voraussetzung sind Anlagen vergütungsfähig, die sich an oder auf baulichen Anlagen befinden, ohne dass es sich um Gebäude handelt (vgl. § 11 Abs. 3 EEG).
- Sonstige (echte) Freiflächenanlagen sind nur vergütungsfähig, wenn sie im Geltungsbereich eines zumindest auch hierfür aufgestellten Bebauungsplans nach § 30 BauGB errichtet werden (§ 11 Abs. 3 Ziff. 1 EEG) oder auf einer dem Fachplanungsvorbehalt des § 38 BauGB unterworfenen Fläche errichtet werden (§ 11 Abs. 3 Ziff. 2 EEG), wozu Planfeststellungen, Plangenehmigungen oder diesen gleichgestellte Genehmigungen zählen.
- Soweit Anlagen im Geltungsbereich eines Bebauungsplans errichtet werden, kommen nur drei Fallgruppen in Frage, nämlich bereits versiegelte Flächen (§ 11 Abs. 4 Ziff. 1 EEG), wirtschaftliche oder militärische Konversionsflächen (§ 11 Abs. 4 Ziff. 2 EEG) oder Grünflächen, die vor dem Bauleitplanverfahren Ackerland waren (§ 11 Abs. 4 Ziff. 3 EEG).


Die Adressaten des Leitfadens sind alle Akteure, die direkt mit der Planung größerer Photovoltaikanlagen befassen sind und sie betreiben oder mehr oder weniger indirekt zu derartigen
Planungen Stellung beziehen müssen, sei es als beteiligte Behörde oder als betroffener Bürger. Dem einen dient der Leitfaden als Sammlung von Handlungsempfehlungen, dem anderen als Hilfe bei der Beurteilung seiner Auswirkungen oder bei der Positionsbestimmung von Akzeptanz oder Ablehnung.


**Abb. 1-1: Übersicht zum Aufbau des Leitfadens**


27.11.2007 Seite 2
Die möglichen Wirkfaktoren, die z. T. vorübergehend und z. T. dauerhaft relevant sind, werden in Kap. 3 bezogen auf die Phasen des Baus, der Anlage und des Betriebs eines Solarparks analysiert und im Hinblick auf die im Rahmen der Umweltprüfung zu beurteilenden Schutzgüter einzelfallunabhängig bewertet. Damit werden dem Planer, aber auch der den Eingriff zu beurteilenden Stelle Hinweise gegeben, auf welche Problemschwerpunkte die Untersuchung oder Prüfung im Einzelfall auszurichten ist.


Das gängige und auch seitens des EEG bevorzugte Verfahren zur Erlangung der eigentlichen späteren Baugenehmigung ist die Zulassung des Bebauungsplans. Das Kap. 5 dient dazu, sowohl dem künftigen Betreiber eines Solarkraftwerks und seinen beratenden Büros als auch der Kommune als verfahrensführende Behörde die speziellen Anforderungen und Herangehensweisen transparent zu machen und auch den Erfahrungs- und Wissenstransfer aus konkreten Planbeispielen zu erleichtern. Es werden praktische Hinweise zur Sicherung der Rückbauregelungen gegeben und Fragen zur Umsetzung der umweltfachlichen Bestimmungen des Baugesetzbuches diskutiert.

Aufgrund ihres umfassenden Auftrages bekommt die Umweltprüfung in der Bauleitplanung ein eigenes Kapitel. Der Umweltbericht hat die Aufgabe, die Ermittlung der Umweltfolgen, ihrer Dimension und ihrer planerischen Berücksichtigung und Bewältigung zusammenzufassen. Da die Betroffenheit von Gebieten des europäischen Schutzgebietsnetzes Natura 2000 zu vermeiden ist und nur in besonderen Ausnahmefällen zu bewältigen sein dürfte, konzentriert sich das Kap. 6 in seinen Ausführungen auf die vorhabenspezifischen Besonderheiten bei der Abwicklung der Eingriffsregelung und der Ermittlung der Kompensationsleistungen durch den Projektträger. Sowohl der Projektträger und die für das „Grüne“ zuständigen Gutachter und Planer als auch die zuständige Behörde erhalten Hinweise zur Bewältigung der Eingriffsregelung, wobei die argumentative Arbeitsweise gegenüber der schablonenhaften Anwendung von Punktwertverfahren bevorzugt wird.

Die möglichst konkreten Hinweisen und Vorschläge des Kap. 7 zur Gestaltung des Solarparks, zur Herstellung, Unterhaltung und naturschutzfachlichen Optimierung der Anpflanzun-


2 Charakterisierung von PV-Freiflächenanlagen


2.1 Anlagentechnik

2.1.1 Solarzellen / Module


Dickschichtzellen (sog. Silizium-Waferzellen oder kristalline Siliziumsolarzellen) bestehen entweder aus

- monokristallinem Silizium (ca. 14-18 % Wirkungsgrad)\(^1\) oder aus
- polykristallinem Silizium (ca. 13-16 % Wirkungsgrad).

Zellmaterialien für Dünnschichtzellen, die in Freiflächenanlagen eingesetzt werden, sind

- amorphes Silizium (a-Si) (ca. 7-11 % Wirkungsgrad)
- amorphes Silizium in der sogenannten Dreilagen-Technik
- Cadmium-Tellurid (CdTe) (ca. 9-12 % Wirkungsgrad).

Module mit Zellen aus Kupfer-Indium-Diselenid (CIS) spielen bei Freiflächenanlagen in Deutschland derzeit keine Rolle.

Dünnschichtzellen benötigen weniger Material und zeichnen sich durch einen geringeren Energieverbrauch bei der Herstellung aus. Sie haben jedoch geringere Wirkungsgrade als kristalline Zellen, so dass bei der Realisierung von PV-Freiflächenanlagen bislang überwiegend monokristalline oder polykristalline Siliziumsolarzellen eingebaut wurden. Da die Dünnschichttechnologie ein größeres Potenzial zur weiteren Reduzierung der Produktionskosten aufweist, ist jedoch zu erwarten, dass diese Zelltechnik zunehmend größere Bedeutung erlangen wird.

Auf den Solarzellen befindet sich eine Antireflexionsschicht, die bewirkt, dass möglichst wenig Licht an der Oberfläche reflektiert wird. Durch eine Variation der Schichtdicke der Antireflexionsschicht sind verschiedene Farbtöne (dunkelblau bis schwarz) möglich. Zum Schutz

\(^1\) Der Wirkungsgrad ist ein Maß für die Fähigkeit einer Solarzelle, die eingestrahlte Lichtleistung in elektrischen Strom umzuusetzen.
vor klimatischen und mechanischen Einflüssen werden beim Standardmodul die Solarzellen zwischen einer Glasscheibe aus gehärtetem Spezialglas als Vorderseite und einer Kunststofffolie als Rückseite in eine transparente Schutzschicht aus Ethylen-Vinyl-Acetat (EVA) eingeschlossen.


Die Leistung eines Solarmoduls wird in Watt peak² (Wp) beziehungsweise Kilowatt peak (kWp) angegeben. Dieser Wert beschreibt die Leistung unter genormten Testbedingungen³, die dem Alltagsbetrieb nicht direkt entsprechen. Entweder ist es dunkler, die Sonne steht niedriger oder im Sommer sind die Zellen wärmer. Jedes Modul reagiert auf die unterschiedlichen Lichtstärken anders, so dass der effektive oder jährliche Ertrag zweier gleichstarker Modultypen stark unterschiedlich sein kann.

2.1.2 Bauweise

Aufständerung / Anlagetypen


Nachgeführte Anlagen, die um ein oder zwei Achsen beweglich sind, folgen im Tagesverlauf dem Stand der Sonne. Dabei wird die Drehbewegung entweder über einen zentralen Mast oder durch einen auf dem Fundament aufliegenden Drehkranz vermittelt.


Fest montierte PV-Freiflächenanlagen in Reihenaufstellung werden meist mit einem Anstellwinkel von 30° errichtet und mit einem Reihenabstand, der einem Verschattungswinkel in Südrichtung von rund 15° entspricht. Der Abstand der Modulreihen ist demzufolge abhängig von der Höhe der vorangegangenen Modulreihe (Faustformel: ca. dreifache Höhe entspricht

² „peak“ – engl. Höchstwert, Spitze
³ 1000 W/qm, 25°C Zelltemperatur und 90° Einstrahlungswinkel bei Lichtspektrum 1,5 AM
dem Abstand der Gestellreihen). Im Süden Deutschlands ist aufgrund des höheren Sonnenstandes ein etwas engerer Reihenabstand möglich als in Norddeutschland.

Die Gestellhöhen werden aufgrund des Materialverbrauchs so niedrig wie möglich gehalten. Bei PV-Freiflächenanlagen in Reihenaufstellung liegt die Höhe der Aufständerung in der Regel bei 0,70 bis 1,50 m über Gelände. Damit soll eine Verschattungsfreiheit durch aufkom- mende Vegetation garantiert werden.

Ein- oder zweiachsig nachgeführte Anlagen weisen je nach Stellung der Modultische einen Bodenabstand von 0,60 bis 3,00 m auf.

Abb. 2-1: Gegenüberstellung verschiedener Anlagetypen

<table>
<thead>
<tr>
<th>Starre Anlage in Reihenaufstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>• fest aus Gestellen montiert, dem Sonnenstand nicht nachgeführt</td>
</tr>
<tr>
<td>• Verankerung/Gründung: Rammpfähle oder Schraubanker, selten Betonfundamente</td>
</tr>
<tr>
<td>• Unterkonstruktion aus Holz, verzinktem Stahl oder Aluminium</td>
</tr>
<tr>
<td>• Wartungsarm aufgrund fehlender Motoren und Drehkonstruktionen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1-achsig nachgeführte Anlage (Tracker)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Modulflächen werden dem Sonnenstand in einer Ebene nachgeführt</td>
</tr>
<tr>
<td>• Verankerung /Gründung mittels Betonfundament oder Schraubanker</td>
</tr>
<tr>
<td>• zentraler Mast mit Drehkonstruktion</td>
</tr>
<tr>
<td>• Unterkonstruktion i. d. R. aus verzinktem Stahl</td>
</tr>
<tr>
<td>• Modulfläche je Trackereinheit bis 35 m² (= 28 Standartmodule), bei steiler Aufstellung entspricht dies einer Höhe von ca. 6 m über Gelände</td>
</tr>
</tbody>
</table>
2-achsige nachgeführt Anlage (z. B. Mover)

- Modulflächen werden dem Sonnenstand in zwei Ebenen nachgeführt, i. d. R. ständig optimale Ausrichtung zur Sonne
- Gründung: Betonfundament (schwimmend)
- Drehkranz
- Unterkonstruktion aus verzinktem Stahl
- Größe der Modulfäche je Movereinheit: bis 50 m², bei steiler Aufstellung entspricht dies einer Höhe von ca. 6 m über Gelände

Gründung und Verankerung

Freiflächen-Anlagen in Reihenaufstellung werden in der Regel mittels Rammpfählen oder Schraubdübeln im Untergrund verankert. Derzeit werden aus Kostengründen meist handelsübliche Profile aus verzinktem Stahl eingesetzt.

Schwimmende Schwerlastgründungen mit Betonschwellen aus Ortbeton sind kostenaufwändiger. Sie kommen nur noch zum Einsatz, wenn

- der Untergrund Rammhindernisse aufweist (großstückige Reste alter Fundamente, Schwellen, Fahrbahnreste etc.) oder eine bestehende Wegedecke (Beton, Asphalt) erhalten werden soll oder muss,
- wegen Altlasten ein Eindringen ins Erdreich untersagt oder nicht geboten ist,
- aus Gründen des Grundwasserschutzes ein Eindringen unterbleiben muss (es ist dann mit Auflagen zum Versiegelungsgrad der Schwerlastgründung zu rechnen).

Durch die immer größeren Spannweiten der Unterkonstruktion verringert sich die Anzahl der Verankerungspunkte verglichen mit früheren Anlagen. Der einzelne Verankerungspunkt hat dafür eine höhere Last aufzunehmen. Im Fall der schwimmenden Gründung erfordert dies ein höheres Gewicht der Schwellen, im Fall der Verankerung eine aufwändig ausgestaltete und/ oder tiefer reichende Verankerung.

Eine Gründung auf versenkten Fundamenten („versenkte Schwerlastgründung“) kommt nur noch im Bereich kleinerer Anlagen (bis 0,3 MWp) zum Einsatz.

Zur Gründung nachgeführter Anlagen werden schwimmende Schwerlastgründungen verwendet (z. B. Solarpark „Gut Erlasee“: Verwendung von Betonringen mit einem Durchmesser von 2,20 m und einer Höhe von 1,00 m, die auf einen planen Untergrund aufgesetzt wurden, Bodenaushub bis 50 cm).
Unterirdische Verkabelung

In der Regel werden die Verbindungen zwischen den Modulgestellen und den Wechselrichtern über im Erdreich verlegte Kabel hergestellt. Zu diesem Zweck müssen Kabelgräben gezogen werden. Die Verlegetiefe beträgt 60 cm, bei überfahrenen Flächen 80 cm. Oberhalb und unterhalb der Kabel wird mit 10 cm Sand verfüllt, so dass die Grabentiefe der Kabelgräben bei 70 bzw. 90 cm liegt. Die Kabel werden in einer Ebene nebeneinander verlegt, der Abstand der Kabel und damit die Breite des Kabelgrabens ergeben sich aus der vorzusehenden Strombelastbarkeit.

Abb. 2-2: Beispiel für die Verlegung der Kabel im Kabelgraben

Die Kabel werden in einer Ebene auf Abstand geführt (Bauphase der Anlage Kiesgrube Steidele, Darrast, Bayern, Foto: M. Mack)


2.2 Flächenbedarf

Die Gesamtfläche einer PV-Freiflächenanlage, d. h. die Größe des in der Regel eingezäunten Betriebsgeländes inkl. Wege, Nebengebäude, Modulaufstellfläche und sonstigen Frei-, Neben- und Ausgleichsflächen ist von verschiedenen Faktoren abhängig.

Maßgeblich für die Größe der Modulaufstellfläche ist v. a.

- die geplante Gesamtleistung (kWp) der Anlage,
- die verwendete Zelltechnik (Dünnschicht oder Si-Waferzellen) und
- der Abstand zwischen den Modulreihen bzw. den Movereinheiten.

Der erforderliche Abstand zwischen den Modulreihen wird v. a. durch den Standort (Neigung der Fläche, geografische Lage der Anlage), die Art der Aufständerung (z. B. als Mover oder festinstallierte Anlage) und die Höhe der Module bestimmt.

In Tab. 2-1 wird beispielhaft für die häufig verwendeten polykristallinen Waferzellen die ertragsbezogene spezifische Aufstellfläche für verschiedene Standorte und Aufstellvarianten dargelegt. Erkennbar ist, dass die erforderliche Aufstellfläche je MW h und Jahr bei einer zweiaxial nachgeführten Anlage größer ist als bei einer Anlage in Reihenaufstellung. Die kleinste Aufstellfläche je MW h und Jahr erfordert der süddeutsche Standort in Hanglage.

Tab. 2-1: Ertragsbezogene spezifische Aufstellfläche von PV-Freiflächenanlagen mit polykristallinen Waferzellen

<table>
<thead>
<tr>
<th>Standort</th>
<th>Aufständerung</th>
<th>Ertragsprognose</th>
<th>Aufstellfläche einschl. erforderlichem Reihenabstand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schleswig-Holstein</td>
<td>Reihenaufstellung</td>
<td>990 kWh/kWp</td>
<td>24.2 m²/kWp → 26 m²/ MWh-Jahr</td>
</tr>
<tr>
<td>Allgäu</td>
<td>Reihenaufstellung</td>
<td>1045 kWh/kWp</td>
<td>18.8 m²/kWp → 18 m²/ MWh-Jahr</td>
</tr>
<tr>
<td>Franken</td>
<td>zweiaxial nachgeführte Anlage</td>
<td>1330 kWh/kWp</td>
<td>ca. 40 m²/kWp → 30 m²/ MWh-Jahr.</td>
</tr>
<tr>
<td>Allgäu/Hanglage</td>
<td>Reihenaufstellung in Hanglage</td>
<td>980 kWh/kWp</td>
<td>13.7 m²/ kWP → 14 m²/ MWh-Jahr.</td>
</tr>
</tbody>
</table>

Für Anlagen in Dünnschichttechnik ergeben sich bis zu zweimal so hohe Flächenwerte. Die Ertragsminderung durch Verschattung kann jedoch bei Dünnschichtmodulen je nach Technologie und Modulorientierung geringer sein als bei Waferzellen, so dass hier z. T. kleinere Reihenabstände gewählt werden können.

Die in Tab. 2-1 genannten Werte sind Mindestwerte. Bei ungünstiger Topographie oder ungünstiger Flächenaufteilung bzw. Verschattung durch zu belassende Baumgruppen etc. kann der Flächenbedarf deutlich höher ausfallen. Sofern die Anlage durch einen Zaun gesichert
wird, ist zudem mit einem Mehrbedarf an Fläche von 20 % bis 25 % der eigentlichen Aufstellfläche zu rechnen. Die Einzäunung ist rechtlich zwar nicht zwingend, wird aber häufig von den Sachversicherern zur Voraussetzung gemacht und ist daher in der Praxis die Regel.

Aus den Auswertungen der ARGE PV-MONITORING lassen sich die in Tab. 2-2 dargestellten Flächenanforderungen für unterschiedliche Modultechnologien Aufstellungsvarianten ableiten. Bei vielen Anlagen ist nur die Grundfläche einschließlich Kompensationsflächen innerhalb des Grundstücks (z. B. ein umlaufender Grundstücksstreifen zur Begrünung des Zauns) bekannt. Dadurch wird die rein technische Fläche bei einigen Anlagen um bis zu ein Drittel überschätzt und die Flächenverhältnisse werden etwas ungünstiger abgebildet als zutreffend.

Insbesondere liegen die nachgeführten Anlagen bei mittleren bis höheren Flächennutzungsfaktoren, wobei die zweiachsigem Anlagen mit rd. 75 m²/kWp nahezu dreimal so groß sind (bei gleichzeitigem Mehrertrag bis zu 30 %) wie die spezifische Fläche bei nicht nachgeführter Reihenaufstellung. Der durchschnittliche Flächenbedarf über alle bisher erfassten Anlagen hinweg liegt rechnerisch bei rd. 4,1 ha bzw. 41.000 m² je MWp (Stand 31.5.2007).

Tab. 2-2: Mittlere spezifische Flächen der Aufstellvarianten bei realisierten Photovoltaik-Freiflächenanlagen in Deutschland 2001 bis 2006
(ARGE PV-MONITORING 2007)

<table>
<thead>
<tr>
<th>Modultechnologie</th>
<th>spezif. Fläche [m² / kWp]</th>
<th>Flächennutzungsfaktor ¹ = A_gr/A_mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si Wafer nicht nachgeführt</td>
<td>29,5</td>
<td>3,9</td>
</tr>
<tr>
<td>Si Wafer einachsig horizontal</td>
<td>38,3</td>
<td>5,0</td>
</tr>
<tr>
<td>Si Wafer einachsig geneigt</td>
<td>57,1</td>
<td>7,5</td>
</tr>
<tr>
<td>Si Wafer zweiechsig</td>
<td>75,4</td>
<td>9,9</td>
</tr>
</tbody>
</table>


Auf dem Gelände einer PV-Freiflächenanlage müssen darüber hinaus verschiedene technische Einrichtungen (insbesondere Wechselrichter) sowie häufig noch Betriebsgebäude für Ersatzteile, Wartungsfahrzeuge o. Ä. untergebracht werden. Der Flächenbedarf für derartige Nebenanlagen liegt auch bei größeren PV-Freiflächenanlagen in der Regel im Bereich weniger hundert m² und ist im Vergleich zur Gesamtfläche relativ unbedeutend.

⁴ siehe z. B. Statement K&S Unternehmensgruppe zur Anlage in SINNING: "Ein Drittel Fläche Module, ein Drittel Abstand um Verschattung zu vermeiden, ein Drittel Grünausgleich" (Wirtschaft 10 plus 04, Mai 2005)
Meist sind auch Wege notwendig um Wartungsfahrzeuge die Zufahrt zu den Modulen zu ermöglichen, dazu kommen Stellplätze und ggf. Wendemöglichkeiten.

2.3 Größe und Höhe der Anlagen


Im Zuge der technischen Weiterentwicklung der Freiflächentechnologie verändern sich auch die Aufstellhöhe der Anlagen und die Modulflächengröße einzelner Einheiten. Derzeit ist als Stand der Serientechnik bei nachgeführten Anlagen eine max. Aufstellhöhe von etwa 6 m über Gelände und eine Modultischgröße von 50 m² (Mover) anzusehen. Anlagen in Reihenaufstellung weisen etwas niedrigere Gesamthöhen auf.

2.4 Lage und Vornutzung


Versiegelte Flächen


5 Anlagen an oder auf baulichen Anlagen, die nicht Gebäude sind, bzw. Anlagen auf dem Fachplanungsvorrang unterfallenden Flächen haben bislang zahlenmäßig keine herausgehobene Bedeutung. Deshalb wird im Folgenden vorrangig auf die besonderen Flächenkriterien des § 11 Abs. 4 EEG, welche für im Geltungsbereich eines Bebauungsplans errichtete PV-Freiflächenanlagen als Vergütungsvoraussetzung gelten, eingegangen.
Stellplätze für Kraftfahrzeuge werden von dieser Fallgruppe nicht erfasst. Diese stellen bauliche Anlagen dar, so dass die Vergütungspflicht für an oder auf diesen Anlagen errichtete PV-Anlagen ohne weitere Voraussetzung, d. h. ohne hier aufgestellten Bebauungsplan eintritt. Hier zeigt sich insoweit eine inhaltliche Unschärfe bzw. Überschneidung des Gesetzes in § 11 Abs. 3 und Abs. 4 Ziff. 1 EEG.

Konversionsflächen

Bei Konversionsstandorten besteht ein breites Spektrum an möglichen Standorten und Vornutzungen. Nicht selten finden sich hier auch Flächen mit besonderer Bedeutung für den Arten- und Biotopschutz. Zu nennen sind u. a.:

- ehemalige Panzerübungsplätze oder Schießplätze mit einem hohen Anteil an nicht versiegelten Flächen. Derartige Flächen weisen häufig ein Mosaik aus vegetationsfreien bzw. vegetationsarmen Flächen, Magerrasen, Heiden und Gebüschen auf und stellen oft wertvolle Sekundärlebensräume oder Rückzugsgebiete für gefährdete Arten dar.
- ehemalige militärisch genutzte Flugplätze mit großen versiegelten Flächen und meist intensiv gepflegten Schutzstreifen neben den Landebahnen,

Um eine Konversionsfläche im Sinne des EEG handelt es sich immer dann, wenn die Auswirkungen der vorherigen militärischen oder wirtschaftlichen Nutzung noch fortwirken. Eine lang zurückliegende Nutzung, die keine Auswirkung mehr auf den Zustand der Flächen hat, entspricht nicht mehr den Vergütungsvoraussetzungen. Eine bindende Definition des Begriffs „Konversionsfläche“ enthält das Gesetz jedoch nicht.

Ackerflächen


---

6 ALTROCK/ÖSCHMANN/TEOBALD, § 11 EEG, Rn. 65
7 vgl. aber Begründung zu § 11 EEG in: BT-Drucks. 15/2864, S. 44 f.
3 Wirkungsprofil des Vorhabentyps

3.1 Mögliche Wirkfaktoren von PV-Freiflächenanlagen


Die möglichen Projektwirkungen von PV-Freiflächenanlagen werden in Tab. 3-2 (S. 22) zusammenfassend dargestellt. Sie werden in baubedingte, d. h. im Wesentlichen auf die Bauzeit beschränkte Wirkungen (in der Regel zeitlich befristet) sowie in anlagebedingte und betriebsbedingte Wirkungen unterschieden.

Tab. 3-1: Generelle Wirkfaktoren bei Photovoltaik-Freiflächenanlagen

<table>
<thead>
<tr>
<th>Wirkfaktor</th>
<th>bau-, (rückbau-) bedingt</th>
<th>anlagebedingt</th>
<th>betriebsbedingt/wartungsbedingt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flächenumwandlung, -inanspruchnahme</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Bodenversiegelung</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Bodenverdichtung</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bodenabtrag, -erosion</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Schadstoffemissionen</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Lärmemissionen</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Lichtemissionen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erschütterungen</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Zerschneidung</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Verschattung, Austrocknung</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Aufheizung der Module</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elektromagnetische Spannungen</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>visuelle Wirkung der Anlage</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
3.1.1 Baubedingte Projektwirkungen

Zur Bauphase gehören im Allgemeinen die Baustelleneinrichtung und die Bauarbeiten bis hin zur Fertigstellung der Anlage. Die Baustelleneinrichtung kann i. d. R. auf dem Gelände des Vorhabens untergebracht werden. Ein zusätzliche baubedingt Flächeninanspruchnahme ist damit meist nicht erforderlich. Zu den wesentlichen baubedingten Wirkungen gehören:

**Teilversiegelung von Boden / Bodenverdichtung**


Moveranlagen werden auf großen Betonfertigfundamenten errichtet, die ebenso wie die komplett im Werk vorgefertigten Modulkonstruktionen auf schweren Transportfahrzeugen angeliefert werden. Zur Aufstellung und Montage vor Ort werden Baukräne eingesetzt.

**Bodenumlagerung / -vermischung**

Insbesondere beim Bau der Kabelgräben (Tiefe 0,70 m bis 0,90 m) muss Boden in größerem Umfang ausgehoben und zwischengelagert werden. Bodenumlagerungen (d. h. Abgrabungen und Aufschüttungen) werden zuweilen auch zum Ausgleich von Reliefunterschieden durchgeführt. Bei größeren Anlagen ist darüber hinaus zunehmend eine Geländeformung zu beobachten, die eine hydrologisch optimierte Verteilung / Abführung des gesammelt anfallenden Niederschlagswassers sicherstellen soll.

**Temporäre Geräusche, Erschütterungen und stoffliche Emissionen**


Erdarbeiten verursachen insbesondere bei trockener Witterung die Bildung diffuser Staubemissionen. Sie sind zeitlich und räumlich begrenzt und lassen sich durch üblicherweise an-
gewendete Maßnahmen, wie z. B. Berieselung mindern. Außerdem sind Abgase der Baumaschinen und Transportfahrzeuge zu erwarten.

3.1.2 Anlagebedingte Projektwirkungen

Unter anlagebedingten Wirkungen werden solche zusammengefasst, die sich durch die Lage und Beschaffenheit der Anlage ergeben.

Bodenversiegelung


Überdeckung von Boden


Die Größe der dauerhaft oder nur teilweise beschatteten Fläche einer Anlage wechselt mit dem Stand der Sonne und kann mit Hilfe von Computerprogrammen genau berechnet werden. Bei einer fest installierten Anlage werden die Flächen unter den Modulen ganzjährig beschattet. Das gleiche gilt für kleinere Flächen nördlich hinter den Modulreihen. Bedingt durch die üblicherweise eingehaltene Mindesthöhe der Module von rd. 0,80-1,00 m über dem Gelände werden diese Flächen jedoch mit Streulicht versorgt. Die Flächen zwischen den
Modulreihen werden vor allem bei tief stehender Sonne (d. h. morgens und abends) sowie im Winter beschattet.

Bei nachgeführten Anlagen treten durch die ständig wechselnde Ausrichtung zur Sonne kaum dauerhaft beschattete Flächen auf. Berechnungen für Moveranlagen zeigen, dass nur etwa 6 – 8% der Modulfläche als Schatten dauerhaft auf die gleiche Fläche treffen. Alle anderen Teilflächen sind, da der Schatten mitwandert, nur vorübergehend beschattet.

Entlang der Unterkante größerer fest installierter Modultische können sich durch den dort konzentrierten Ablauf von Niederschlägen Erosionsrinnen ausbilden. Die Wasserbelastung an der Antropfkante der Modultische ist abhängig von der Anzahl der Module, die innerhalb einer einzelnen Modulreihe übereinander montiert werden. Ausgeführt werden meist zweireihige oder dreireihige Anordnungen, vereinzelt auch viereihige. Typische Werte liegen bei knapp 3 m² Niederschlagsfläche pro laufenden Meter Abtropfkante (zweireihig) bis ca. 5,50 m² (viereihige Anordnung) pro m. Über 1 m Abtropfkante fließt dann die Niederschlagsmenge ab, die auf 3,00 m² bzw. 5,50 m² gefallen ist.


**Licht**

Durch PV-Freiflächenanlagen können verschiedene Formen von optischen Effekten entstehen. Zu nennen sind in diesem Zusammenhang die:

- Lichtreflexe von strukturierten, streuenden Oberflächen (Module) und weniger streuenden glatten Oberflächen (Metallkonstruktionen),
- Spiegelungen durch Lichtreflexe von spiegelnden glatten Glasoberflächen sowie
- die Ausbildung von polarisiertem Licht durch Reflexion.

Eine großflächige Beleuchtung der Betriebsflächen durch künstliche Lichtquellen ist bei den bislang realisierten Anlagen nicht zu beobachten, so dass dieser Wirkfaktor bislang nicht zum Tragen kommt.

**Lichtreflexe**: PV-Anlagen benötigen die Sonnenstrahlung zur Erzeugung von elektrischem Strom. Deshalb werden die Transmission und die Absorption der Sonnenstrahlung anlagetechnisch verstärkt und die Reflektion vermindert. Dies geschieht durch das Aufbringen einer Antireflexionsschicht auf die Solarzellen und durch die Verwendung spezieller Frontgläser.

Trotz des Einsatzes dieser Materialien sind Reflexionen jedoch nicht vollständig zu vermeiden. Hochwertige Gläser lassen ca. 90 % des Lichtes passieren, rd. 2% werden gestreut und absorbiert, nur 8% reflektiert. Moderne Antireflexschichten können die solare Transmission auf über 95% steigern und damit die Reflexion unter 5% bringen. Durch diese Restreflexion
von Licht erscheinen die Module gegenüber vegetationsbedeckten Flächen als hellere Objekte in der Landschaft.

Bei tiefem Sonnenstand (Einfallswinkel < 40°) treten zunehmend höhere Reflexionen auf, bei einem Einfallswinkel von 2° erfolgt im Allgemeinen eine Totalreflexion der Sonneneinstrahlung. Diese Lichtreflexion wird durch den Einsatz von strukturiertem Frontglas stark gestreut.

Neben den Moduloberflächen können auch die Konstruktionselemente (Rahmen, metallische Unterkonstruktionen) Licht reflektieren. Aufgrund der relativ unsystematischen Ausrichtung dieser Bauteile zum Licht sind dabei Reflexionen in die gesamte Umgebung möglich. An den überwiegend glatten, nicht strukturierten Oberflächen wird das Licht bei der Reflexion zudem weniger stark gestreut.

**Spiegelungen:** Spiegelnde Oberflächen reflektieren Umgebungsbilder, die widergespiegelten Habitatstrukturen können z. B. Vögeln einen Lebensraum vortäuschen und zum Anflug verleiten. Ein großes Risiko besteht z. B. bei senkrechten Spiegelglasfronten im Siedlungsbereich, in denen sich Gehölze widerspiegeln können.

Bei den häufig verwendeten Wafer-Modulen ist aufgrund der Farbgebung und der Oberflächenstruktur nur ein sehr geringes Spiegelungsvermögen gegeben. Dünnschichtmodule können dagegen durch die dunkle Grundfärbung und die in der Regel glatten Glasoberflächen bei bestimmten Lichtverhältnissen ein starkes Spiegelungsverhalten aufweisen.


Auch von einigen Insekten (z. B. Bienen, Hummeln, Ameisen, einigen flugfähigen Wasserinsekten) ist bekannt, dass sie die Fähigkeit haben, polarisiertes Licht am Himmel wahrzunehmen und danach zu navigieren.

Da die Reflexion von Licht an den Moduloberflächen die Polarisationsebenen des reflektierten Lichtes ändern kann, besteht die Vermutung, dass es zu anlagebedingten Irritationen von Insekten oder Vögeln kommen könnte.

**Visuelle Wirkung**

Um den Aufwand bei der Verkabelung zu minimieren, werden die Module einer PV-Freiflächenanlage häufig räumlich konzentriert auf kompakten Flächen errichtet. Eine verstreute Anordnung ist nicht üblich. Die Aufstellung erfolgt nach streng geometrischen Mus-
tern, je nach Anlagetyp punkt- oder linienförmig. Die Ausdehnung der visuell wirksamen Fläche kann je nach Anlagengröße sehr unterschiedlich sein. Zurzeit besteht ein Trend zu immer größeren Anlagen. Die Höhe der Module, die die vertikale Wirksamkeit einer Anlage bestimmt, liegt zurzeit bei max. 6,00 m („Mover“).

In der Regel erfolgt die Verlegung der Anschlussleitungen zum Einspeisepunkt in das Netz des Energieversorgungsunternehmen (EVU) auch aus Kostengründen unterirdisch (s. Kap. 2.1.2). Die Anlage einer oberirdischen Leitung zum nächsten Einspeisepunkt ist bisher von keiner Anlage bekannt, könnte aber aufgrund z. B. ungünstiger topographischer Verhältnisse in Frage kommen.

**Einzäunung**

Überall dort, wo Module aus der Verankerung gelöst werden können, wird von den Versicherern ein mindestens 2,00 m hoher Zaun mit Alarmanlage und Überwachungseinrichtungen gefordert. Von der Zaunpflicht ausgenommen sind nur Anlagen, bei denen die Module nicht entfernt werden können, ohne dabei zerstört zu werden (z. B. Festkleben der Module am Rahmen) oder Anlagen, die sich auf einem bewachten bzw. gesicherten Betriebsgelände befinden.

*Abb. 3-1: Schutzzaun mit Sockelmauer – Entzug von Lebensräumen und Barrierefunktion*  
(Foto: M. Reichmuth)
Aufheizen der Module / Wärmeabgabe

Die Hersteller von Solarmodulen sind bestrebt, die Erwärmung so gering wie möglich zu halten, da mit steigender Temperatur der Wirkungsgrad der Solarzellen sinkt (Luftkühlung durch Laminat an der Rückseite und Glasplatte an der Vorderseite). Im Regelfall erhitzen sich die Module auf Temperaturen bis 50°C, bei voller Leistung (Sonnenschein) können an der Moduloberfläche zeitweise Temperaturen von über 60°C auftreten. Im Gegensatz zu Dachanlagen weisen Freiflächenanlagen in der Regel eine bessere Hinterlüftung auf, so dass diese sich geringer erwärmen.

Die Aluminiumhalteprofile erhitzen sich im Allgemeinen weniger stark. Sie erreichen unter üblichen Bedingungen Temperaturen von etwa 30°C.

3.1.3 Betriebsbedingte Projektwirkungen

Betriebsbedingte Projektwirkungen umfassen alle Wirkungen, die beim Betrieb und bei der Unterhaltung einer PV-Freiflächenanlage auftreten.

Stoffliche Emissionen


Geräusche

Bei nachgeführten Anlagen treten im Betrieb Geräuschemissionen durch die Motoren auf. Sie liegen nach Angaben von Betreibern bei „Movern“ um 30 dB (A), was einem Weckerticken entspricht. Derartige Geräusche sind von Sonnenaufgang bis Sonnenuntergang gegeben (ca. alle 10 Minuten für 3-5 Sekunden). Jeweils am Ende eines Tages (etwa eine Stunde nach Sonnenuntergang) erfolgt je nach Anlagesteuerung eine Rückführung der Module.
Elektrische und magnetische Felder

Die von einer PV-Anlage ausgehenden Wirkungen lassen sich wie folgt zusammenfassen:

- Die Solarmodule und die Verbindungskabel zum Wechselrichter erzeugen überwiegend Gleichfelder (elektrische und magnetische).
- Die Wechselrichter und die Einrichtungen, die mit dem Wechselstromnetz in Verbindung stehen, das Kabel zwischen Wechselrichter und Trafostation sowie die Trafostation selbst erzeugen in ihrer Umgebung schwache (elektrische und magnetische) Wechselfelder.
- Elektromagnetische Felder bzw. Strahlungen, die im Hochfrequenzbereich z. B. durch Mobilfunkanlagen, Handys oder Mikrowellengeräten erzeugt werden, treten beim Betrieb einer PV-Anlage nicht auf.

Weitere Ausführungen sind Kap. 3.2.7 zu entnehmen.

Wartung

Bislang liegen noch keine belastbaren Erfahrungen zum Wartungsbedarf (Reparaturen, Austausch von Bauteilen etc.) der PV-Freiflächenanlagen vor. Im Normalbetrieb wird in der Regel mit zwei Wartungskontrollen pro Jahr gerechnet. Im Vergleich der Anlagetypen ist bei nachgeführten Anlagen aufgrund der Steuerungstechnik ein höheres Risiko für Störungen gegeben.


Mahd und Beweidung

Die von einem PV-Vorhaben beanspruchten Ackerflächen müssen lt. EEG in Grünland umgewandelt werden. Hinsichtlich Nutzungsart (Beweidung / Mahd) und Nutzungsintensität bestehen keine gesetzlichen Vorgaben, so dass hier Unterschiede auftreten können. Aufgrund der eingeschränkten Bewirtschaftbarkeit der Flächen ist jedoch im Regelfall mit einer extensiven Nutzungsform zu rechnen (1 bis 2-malige Mahd, extensive Beweidung).

Für den Standorttyp „Konversionsfläche“ werden im EEG keine nutzungsbezogenen Vorgaben gemacht. Die Bewirtschaftung der Flächen orientiert sich hier an der vorhabensspezifischen Anforderung, die Flächen zur Vermeidung von Verschattungen offen zu halten und
das Aufkommen von Gehölzen zu unterbinden. Insbesondere bei großflächigen Anlagen geschieht dies häufig durch eine Beweidung mit Schafen.

3.1.4 Tabellarische Übersicht / Checkliste zur Darstellung der Wirkungen

Tab. 3-2: Mögliche Wirkfaktoren von PV-Freiflächenanlagen

<table>
<thead>
<tr>
<th>Wirkfaktor</th>
<th>qualitative und quantitative Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>baubedingte Projektwirkungen</strong></td>
<td></td>
</tr>
<tr>
<td>Teilversiegelung von Boden (durch Anlage geschotterter Zufahrtswege bzw. Baustellenstraßen, Lager- und Abstellflächen)</td>
<td>Fläche in m²</td>
</tr>
<tr>
<td>Bodenverdichtung (durch den Einsatz schwerer Bau- und Transportfahrzeuge)</td>
<td>Fläche in m²</td>
</tr>
<tr>
<td>Bodenumlagerung und -durchmischung (bedingt durch die Verlegung von Erdkabeln sowie durch Geländemodellierungen)</td>
<td>Fläche in m², Volumen in m³</td>
</tr>
<tr>
<td>Geräusche, Erschütterungen und stoffliche Emissionen (bedingt durch Baustellenverkehr und Bauarbeiten)</td>
<td>Lärm in dB (A), Erschütterungen, Stoffeintrag: qualitative Abschätzung</td>
</tr>
<tr>
<td><strong>anlagebedingte Projektwirkungen</strong></td>
<td></td>
</tr>
<tr>
<td>Bodenversiegelung (Fundamente, Betriebsgebäude, evtl. Zufahrtswege, Stellplätze etc.)</td>
<td>Fläche in m²</td>
</tr>
<tr>
<td>Überdeckung von Boden (durch die Modulflächen):</td>
<td></td>
</tr>
<tr>
<td>- Beschattung</td>
<td></td>
</tr>
<tr>
<td>- Veränderung des Bodenwasserhaushaltes</td>
<td></td>
</tr>
<tr>
<td>- Erosion</td>
<td></td>
</tr>
<tr>
<td>Licht</td>
<td>qualitative Abschätzung</td>
</tr>
<tr>
<td>- Lichtreflexe</td>
<td></td>
</tr>
<tr>
<td>- Spiegelungen</td>
<td></td>
</tr>
<tr>
<td>- Polarisation des reflektierten Lichtes</td>
<td></td>
</tr>
<tr>
<td>Visuelle Wirkung</td>
<td></td>
</tr>
<tr>
<td>- optische Störung</td>
<td></td>
</tr>
<tr>
<td>- Silhouetteneffekt</td>
<td></td>
</tr>
<tr>
<td>Höhe der Module in m; Ausdehnung des Sichtraumes in m, km; qualitative Abschätzung</td>
<td></td>
</tr>
<tr>
<td><strong>betriebsbedingte Projektwirkungen</strong></td>
<td></td>
</tr>
<tr>
<td>Geräusche, stoffliche Emissionen</td>
<td>qualitative Abschätzung</td>
</tr>
<tr>
<td>Wärmeabgabe (Aufheizen der Module)</td>
<td>qualitative Abschätzung</td>
</tr>
<tr>
<td>Elektrische und magnetische Felder</td>
<td>qualitative Abschätzung</td>
</tr>
<tr>
<td>Wartung (regelmäßige Wartung und Instandhaltung, außerplanmäßige Reparaturen, Austausch von Modulen)</td>
<td>Anzahl der Wartungsgänge /Jahr oder Monat</td>
</tr>
<tr>
<td>Mahd / Beweidung</td>
<td>qualitative Abschätzung</td>
</tr>
</tbody>
</table>
3.2 Bewertung möglicher Umweltauswirkungen von PV-Freiflächenanlagen

Die allgemeine Beurteilung der möglichen Umweltauswirkungen dient in erster Linie der zielgerichteten Ausrichtung von Umweltprüfung und Eingriffsregelung auf die wesentlichen, im Normalfall zu berücksichtigenden erheblichen Beeinträchtigungen. Ausgehend vom Wirkpro-
fil des Vorhabentyps „PV-Freiflächenanlage“ sind die erheblichen Auswirkungen mit Konfliktpotenzial nach derzeitigem Kenntnisstand vor allem in folgenden Schutzgütern zu erwarten:

- „Boden“ aufgrund der umfangreichen Erdarbeiten und dem flächenhaften Einsatz von schweren Baumaschinen und Transportfahrzeugen,
- „Landschaft bzw. Landschaftsbild“ aufgrund der technischen Überprägung insbesondere bei Großflächigkeit bzw. in exponierter Lage.

Bei einer unsachgerechten Standortwahl (z. B. Nutzung von Rastvogelgebieten) oder großflächiger Ausformung können aber auch erhebliche Auswirkungen auf Pflanzen, Tiere und die biologische Vielfalt entstehen. Die Konflikte mit den Schutzgütern Wasser, Klima und Mensch sind eher gering und im Wesentlichen auf die Bauzeit beschränkt.

Positive Umwelteffekte sind v. a. dann zu erwarten, wenn durch ein Vorhaben Flächen mit geringer Bedeutung für den Arten- und Biotopschutz (z. B. intensiv genutzte Ackerlandschaften oder stark überprägte Konversionsstandorte) genutzt und im Vergleich aufgewertet werden. Bei extensiver Pflege können sich derartige Standorte zu wichtigen Rückzugs- oder Trittsteinbiotopen entwickeln.

3.2.1 Pflanzen


Vornutzung Acker

Mit dem Abschluss der Bauarbeiten erfolgt in der Regel eine Begrünung der Flächen durch Selbstberasung. Naturschutzfachlich wünschenswert gewährleistet diese Form der Vegetationsausbildung ein Maximum an Struktur- und Artenvielfalt.

Die weitere Vegetationsentwicklung der Flächen wird im Wesentlichen durch das vorhandene Nährstoffangebot im Boden und das Nutzungsregime (Mahd/Beweidung) bestimmt (z. B. Auftreten nitrophytischer Arten bei Beweidung).

Dauerhaft vegetationsfreie Flächen infolge der Beschattung durch die Modulfächer konnten sowohl bei Anlagen in Reihenaufstellung als auch bei nachgeführten Anlagen nicht beobachtet werden. Bei den heute üblichen PV-Anlagen ist unter Beachtung einer Mindesthöhe über dem Boden von ca. 0,80 m durch den Einfall von Streulicht selbst unter den Modultischen ein geschlossenes Pflanzenwachstum möglich.


Vornutzung Konversionsstandorte

Auf Konversionsstandorten kann sich unter Umständen ein vergleichsweise hohes Konfliktpotenzial ergeben, insbesondere dann, wenn es sich um relativ wenig versiegelte Flächen handelt, die sich z. B. nach einer militärischen Nutzung ungestört zu wertvollen Biotopen entwickeln konnten (z. B. Ausbildung von Mager- und Trockenrasenbiotopen).

Bereits in der Bauphase kann es hier bedingt durch den Baustellenbetrieb und den Bau der Kabelgräben zu einer Schädigung der vorherigen Vegetationsdecke kommen. Durch das mögliche Aufbringen von Schottermaterial zur Verbesserung der Befahrbarkeit von Baustra-

Werden vorhandene Vegetationsbestände durch PV-Module überbaut, so kann dies je nach Vegetationstyp und Artenvorkommen infolge der veränderten Licht- und Beregnungsverhältnisse zu einer Verschiebung der Vegetationszusammensetzung auf den betroffenen Flächen führen. Deutliche Unterschiede hinsichtlich der Überdeckungseffekte sind in Abhängigkeit von dem verwendeten Anlagetyp zu erwarten. Im Vergleich zu den nachgeführten Anlagen ist die dauerhaft verschattete Fläche bei den fest installierten Modulreihen deutlich größer.

3.2.2 Tiere


Vögel

Aus naturschutzfachlicher Sicht kann es durch bau- und anlagenbedingte Flächeninanspruchnahmen und damit verbundene Nutzungsänderungen sowohl zu positiven als auch zu negativen Auswirkungen auf die Avifauna kommen.


Die Untersuchungen (GFN 2007) zeigen, dass zahlreiche Vogelarten die Zwischenräume und Randbereiche von PV-Freiflächenanlagen als Jagd-, Nahrungs- und Brutgebiet nutzen können. Einige Arten wie Hausrotschwanz, Bachstelze und Wacholderdrossel brüten an den Gestellen von Holzunterkonstruktionen, Arten wie Feldlerche oder Rebhuhn konnten auf Freiflächen zwischen den Modulen als Brutvögel beobachtet werden. Neben den brütenden Arten sind es vor allem Singvögel aus benachbarten Gehölzbiotopen, die zur Nahrungsaufnahme die Anlagenflächen aufsuchen. Im Herbst und Winter halten sich auch größere Sing-
vögeltrupps (Hänflinge, Sperlinge, Goldammern u. a.) auf den Flächen auf. Die schneefreien Bereiche unter den Modulen werden im Winter bevorzugt als Nahrungsbioptope aufgesucht. 


Die Solarmodule selber werden, wie Verhaltensbeobachtungen zeigen, regelmäßig als Ansitz- oder Singwarte genutzt. Bei nachgeführten Anlagen führen die Bewegungen der Module dabei nicht zum plötzlichen Auffliegen der Vögel. Hinweise auf eine Störung der Vögel durch Lichtreflexe oder Blendwirkungen liegen nicht vor.


Dünnsschichtmodule weisen ein vergleichsweise starkes Spiegelungsvermögen auf. Durch die Ausrichtung der Module zur Sonne (i. d. R. 30°) sind jedoch Widerspiegelungen von Habitatelementen (Gebüschen, Bäumen etc.), die Vögel zum Anflug motivieren könnten, kaum möglich. Das diesbezügliche Risiko ist daher sehr gering.
Von einigen territorialen Vogelarten wie Buchfink, Bachstelze oder Elster ist bekannt, dass diese ihre vermeintlichen „Widersacher“ im Spiegelbild z. B. einer Fensterscheibe attackieren können (sog. „Spiegelfechter“). Ein derartiges Verhalten ist nicht auszuschließen, hat in der Regel jedoch keine nachhaltigen Folgen für die betroffenen Individuen.


Kollisionen aufgrund des versuchten „Hindurchfliegens“ (wie bei Glasscheiben) sind aufgrund der fehlenden Transparenz der Module sicher auszuschließen.


Wirbellose

Bei dieser Tierartengruppe treten bedingt durch die vorhabensspezifischen Wirkfaktoren von PV-Anlagen v. a. folgende Fragestellungen in den Mittelpunkt:

- Welchen Einfluss hat die Überschirmung von Flächen (Beschattung) auf die Raumnutzung sonnenliebender Arten?
- Gibt es eine mögliche Lockwirkung und anlagenbedingte Mortalität insbesondere von flugfähigen Wasserinsekten, die sich bei der Suche nach neuen Gewässern an der Ausrichtung des polarisierten Lichtes orientieren?
• Gibt es Hinweise, dass die Betriebstemperaturen von PV-Modulen zu Beeinträchtigungen (Verletzung, Mortalität) führen?


Die Besiedelung und Nutzung dieser Flächen durch tagaktive Arten wurde am Beispiel der Heuschrecken untersucht. Zumindest auf nicht angesäten PV-Freiflächenanlagen mit heterogener Vegetation können demnach durchaus anspruchsvollere Arten (d. h. Arten der Roten Liste) vorkommen. Durchgeführte Transektzählungen zeigen, dass die erfassten Heuschreckenarten sich tagsüber vorzugsweise in den besonnenen Bereichen aufhalten, während die beschatteten Bereiche unter den Modulen weitgehend gemieden werden. Tierarten, die eine PV-Freiflächenanlage nach der Bauphase besiedeln, finden einen aufgrund der Über- schirmung unterschiedlich beschatteten Lebensraum bereits so vor. Eine Beeinträchtigung lässt sich daraus also nicht ableiten.


Von einigen flugfähigen Wasserinsekten ist bekannt, dass sie sich bei der Suche nach neuen Gewässern vor allem an der Ausrichtung des polarisierten Lichtes orientieren. Es ist daher nicht auszuschließen, dass diese Insekten auch durch PV-Module angelockt werden. Auch andere flugfähige Insektenarten wie z.B. Lauf- und Blattkäfer orientieren sich am polarisierten Licht und können ebenfalls angelockt werden.


**Säugetiere**


3.2.3 Boden


Je nach Beschaffenheit des Untergrundes sind während der Bauzeit befestigte (in der Regel geschotterter) Baustreifen, Lagerflächen oder Kranstellplätze erforderlich, die eine zusätzliche Beeinträchtigung des Bodens darstellen (Oberbodenabtrag, Bodenverdichtung, Einbau standortfremder Materialen).

Sofern sich unmittelbar nach Beendigung der Bauarbeiten eine geschlossene Vegetationsdecke ausbilden kann, ist in der Regel nicht mit erheblichem Bodenabtrag durch Wind- oder Wassererosion zu rechnen. Problematisch sind allenfalls Hanglagen mit bodennah installierten Modulreihen oder Standorte mit hoher Erosionsempfindlichkeit und einer standort- oder baubedingt schütteren Pflanzendecke.

3.2.4 Wasser

Sofern keine Grundwasserabsenkung infolge der Tiefbaumaßnahmen (Kabelverlegung) oder eine Gründung in Bereichen mit hoch anstehendem Grundwasser erfolgt, ist nicht mit relevanten Auswirkungen auf das Grundwasser zu rechnen. Das auf den Flächen auftreffende Niederschlagswasser wird trotz punktueller Versiegelungen und der Überdeckung mit Modulen im Allgemeinen vollständig und ungehindert im Boden versickern. Eine Reduzierung der Grundwasserneubildung ist demzufolge nicht zu erwarten. Die Niederschlagsintensität zwi schen den Modulen und unter den Modulen selbst wird sich je nach Windstärke unterschied-
lich darstellen. Ein Schadstoffeintrag über den Boden in das Grundwasser ist bei sachgemä-
ßem Umgang mit wassergefährdenden Stoffen nicht zu erwarten.

3.2.5 Klima/Luft

Veränderung der lokalklimatischen Ausgleichsfunktion von Flächen

Durch die großflächige Überbauung von Flächen mit Modulen können lokalklimatische Ver-
änderungen auftreten. Im Rahmen von Temperaturmessungen (POWROCZNIK 2005) wurde
dargelegt, dass die Temperaturen unter den Modulreihen durch die Überdeckungseffekte
tagsüber deutlich unter den Umgebungstemperaturen liegen. In den Nachtstunden liegen die
Temperaturen unter den Modulen dagegen einige Grade über den Umgebungstemperaturen. Die
Wärmestrahlung wird durch die Module im Raum darunter gehalten und kann von dort
nicht wegströmen. Derselbe Effekt, der in der Nacht durch einen bewölkten Himmel eintritt,
erfolgt hier kleinräumig durch die Modulflächen. Auf den Flächen einer PV-Freiflächenanlage
erfolgt somit nie die gleiche Abkühlung wie auf einer unbebauten Freifläche (Acker, Grün-
land). Diese veränderte Wärmeabstrahlung hat eine verminderte Kaltluftproduktion zur Fol-
ge.

Eine Beeinträchtigung des Schutzgutes Klima/Luft ist daraus nicht generell abzuleiten. Kon-
flikte sind nur dann zu erwarten, wenn durch ein Vorhaben Flächen mit vorhandener Kaltluft-
produktion überbaut werden und die dort produzierte Kaltluft eine klimatische Ausgleichs-
funktion besitzt. Eine derartige Ausgleichsfunktion ist immer dann gegeben, wenn die Kaltluft
in Richtung eines Belastungsraumes abfließen konnte, um dort einer klimatischen bzw. luft-
hygienischen Belastung entgegenzuwirken.

Werden Leitbahnen zu belasteten Wärmeinseln beansprucht, so kann dies gleichfalls zu
Konfliktsituationen führen, da PV-Freiflächenanlagen zum einen ein mechanisches Hindernis
zum anderen bedingt durch die Temperaturdifferenzen aber auch ein thermisches Hindernis
für abströmende Kaltluft darstellen können.

Ausbildung von „Wärmeinseln“

Die Temperaturkurve einer Moduloberfläche verhält sich ähnlich wie die Temperaturkurve
der Umgebungstemperatur. Allerdings reagieren die Moduloberflächen sehr viel empfindli-
cher auf die Sonneneinstrahlung, was zu einem schnelleren Aufheizen und höherer Tempe-
raturen führt. Die Höchsttemperaturen liegen im Durchschnitt bei etwa 50°-60°. Insbesondere
im Hochsommer können diese Temperaturen an sonnenreichen Tagen noch übertroffen
werden. Durch diese energietechnisch unerwünschte Temperaturerhöhung erwärmt sich die
darüber befindliche Luftschicht. Die aufströmende warme Luft verursacht Konvektionsström-
e und Luftverwirbelungen. In diesen Bereichen kann durch die Aufheizung auch ein Absinken
der relativen Luftfeuchte erfolgen. Über den Modulen entsteht somit ein trocken warmes
Luftpaket (POWROCZNIK 2005). Großräumige klimarelevante Auswirkungen sind durch diese
mikroklimatischen Veränderungen nicht zu erwarten, kleinräumig können derartige Effekte u. U. die Habitateignung der Flächen beeinflussen.

3.2.6 Landschaft / Landschaftsbild


Für den Bau von PV-Freiflächenanlagen auf zuvor ackerbauliche genutzten Flächen werden nicht selten Standorte in der freien Landschaft beansprucht, die keine Anbindung an vorhandene Siedlungsstrukturen aufweisen. Mit dieser Vorgehensweise erhöht sich der Nutzungsdruck auf die freie Landschaft, d. h. ihre Anreicherung mit technogenen Elementen nimmt weiter zu.


Auffälligkeit von PV-Freiflächenanlagen

Die Auffälligkeit einer PV-Freiflächenanlage in der Landschaft ist von mehreren Faktoren abhängig, hierzu zählen sowohl anlagebedingte Faktoren (wie Reflexeigenschaften und Farbgebung der Bauteile), standortbedingte Faktoren (z. B. Lage in der Horizontlinie, Silhouettenwirkung) als auch andere Faktoren wie z. B. die Lichtverhältnisse (Sonnenstand, Bewölkung).


Nicht reflektierende Tragekonstruktionen (z. B. aus Holz) haben in der Regel nur eine geringe Auffälligkeit. Sie können in einer sehr naturnahen Landschaft aber dennoch als Fremdkörper im Landschaftsbild zu Beeinträchtigungen führen.

Erscheinen die Module in der Horizontlinie, so kommt es bei geringem Abstand oder bei besonders hohen Modulen auch bei größerem Abstand zu einer Überhöhung der Horizontlinie (Silhouetteneffekt). Dadurch werden die Anlagen im Landschaftsbild besonders auffällig.
Art und Intensität der Wahrnehmung in der Landschaft

Im Nahbereich der Anlage ist bei fehlender Sichtverschattung immer eine dominante Wirkung gegeben. Die einzelnen baulichen Elemente können in der Regel aufgelöst erkannt werden. Die Anlage zieht schon aufgrund der Größe und der erkennbaren technischen Einzelheiten die Aufmerksamkeit besonders auf sich. Anlagebedingte Faktoren wie Farbgebung oder der Sonnenstand haben hier wenig Einfluss auf die Wirksamkeit.

Mit zunehmender Entfernung werden die einzelnen Element oder Reihen einer Anlage meist nicht mehr (unwillkürlich) aufgelöst und erkannt. Die Anlage erscheint eher als mehr oder weniger homogene Fläche, die sich dadurch deutlich von der Umgebung abhebt. Die Auffälligkeit in der Landschaft wird hier von den oben beschriebenen Faktoren (wie Sichtbarkeit der Moduloberflächen oder Helligkeit infolge der Reflexion von Streulicht) bestimmt. Die sichtverschattende Wirkung des Reliefs oder sichtverschattender Strukturen (Gehölze, Wald, Gebäude etc.) nimmt zu.

Aus sehr großer Entfernung werden die Anlagen nur noch als lineares Element wahrgenommen, das vor allem wegen seiner gegenüber der Umgebung meist größeren Helligkeit Aufmerksamkeit erregt. Die Reichweite des Sichtraumes ist dabei stark vom Relief und von der Lage der Anlage im Relief abhängig. Ein großer Sichtraum ist insbesondere zu erwarten bei einer Lage in der Ebene und fehlender Abpflanzung (bei geeigneter Abpflanzung sind diese Auswirkungen z. T. jedoch vermeidbar),
bei weitem Relief und Anlage von PV-Anlagen in Hangbereichen sowie
bei engem Relief und Anlage von PV-Anlagen auf exponierten Flächen.
3.2.7 Menschen einschließlich der menschlichen Gesundheit

Der Mensch kann stets über die Auswirkungen auf die anderen Schutzgüter mit betroffen sein. Daneben gibt es Auswirkungen insbesondere über die Wirkfaktoren Geräusche oder Licht (z. B. Lichtreflexe), die den Menschen auch direkt und ohne den „Umweg“ über andere Schutzgüter betreffen können. Die wesentlichen Aspekte bei denen der Mensch als eigenständiger Belang zu betrachten ist, sind

- die menschliche Gesundheit und das menschliche Wohlbefinden.
  In Bezug auf PV-Freiflächenanlagen sind hier vor allem mögliche Beeinträchtigungen durch baubedingte Geräusche, optische Effekte (Lichtreflexe etc.) und elektrische und magnetische Felder denkbar.
- die Wohn- und Wohnumfeldfunktion.
Leitfaden zur Berücksichtigung von Umweltbelangen bei der Planung von PV-Freiflächenanlagen

ARGE Monitoring PV-Anlagen

- die Erholungsfunktion (d. h. Belange der landschaftsbezogenen Erholung).
  Beeinträchtigungen dieser Funktion sind immer dann zu erwarten, wenn Flächen mit Bedeutung für die landschaftsbezogene Erholung beansprucht werden oder die Erreichbarkeit, Zugänglichkeit oder Erlebbarkeit von Erholungsflächen eingeschränkt wird.
  Wirkfaktoren: Einzäunung (Flächenentzug, Barrierefunktion), visuelle Wirkung.

Nachfolgend werden einige im Zusammenhang mit PV-Freiflächenanlagen häufig genannte Wirkfaktoren und die daraus möglicherweise resultierenden Beeinträchtigungen auf den Menschen beschrieben.

Mögliche Auswirkungen auf den Menschen durch optische Effekte

Die Solarmodule reflektieren einen Teil des Lichtes. Durch diese Lichtreflexion kann es unter bestimmten Konstellationen, die nachfolgend beschrieben werden, zu Reflexblendungen kommen. Eine Blendung stellt eine vorübergehende Funktionsstörung des Auges dar, durch die man gehindert wird, Dinge zu erkennen, die man sehen muss oder sehen will. Voraussetzung ist, dass der Betrachter unmittelbar in die Blendquelle blickt.

Durch die Ausrichtung der Module zur Sonne sind nicht alle Standorte in der Umgebung einer Anlage gleichermaßen von Reflexblendungen betroffen. Bei fest installierten Anlagen (Aufstellung 30°) werden die Sonnenstrahlen in der Mittagszeit nach Süden in Richtung Himmel reflektiert. Die südlich einer Anlage liegenden Flächen sind dabei nur theoretisch betroffen (z. B. wenn sich in unmittelbarer Nachbarschaft zur PV-Anlage ein Hochhaus befindet). Bei dem um die Mittagszeit nahezu senkrechten Einfallswinkel ist die Reflexion zudem stark reduziert (d. h. die Module absorbieren den größten Teil des Lichtes), so dass Störungen im Süden einer Anlage nahezu nicht bestehen.

Bei tief stehender Sonne (d. h. abends und morgens) werden bedingt durch den geringen Einfallswinkel größere Anteile des Lichtes reflektiert. Reflexblendungen können dann in den Bereichen westlich und östlich der Anlage auftreten. Durch die dann ebenfalls (in Blickrichtung) tief stehende Sonne werden diese Störungen jedoch relativiert, da die Reflexblending der Module unter Umständen von der Direktblending der Sonne überlagert wird. Schon in kurzer Entfernung (wenige dm) von den Modulreihen ist bedingt durch die stark Licht streuende Eigenschaft der Module zudem nicht mehr mit Blendungen zu rechnen. Auf den Oberflächen der Module sind dann nur noch helle Flächen zu erkennen, die keine Beeinträchtigung für das menschliche Wohlbefinden darstellen.

Mögliche Auswirkungen auf den Menschen durch elektrische und magnetische Strahlung

Als mögliche Erzeuger von Strahlungen kommen die Solarmodule, die Verbindungskabel, die Wechselrichter und Transformerstationen in Frage (BRINKMEIER 2005, VERBRAUCHER INITIATIVE E. V. 2004). Die maßgeblichen Grenzwerte der BImSchV werden dabei jedoch in jedem Fall deutlich unterschritten.

Die Solarmodule erzeugen Gleichstrom. Dabei entsteht bei Lichteinfall zwischen der + und der – Leitung des Solargenerators ein elektrisches Gleichfeld, das jedoch nur sehr nahe (bis 10 cm) an den Solarmodulen messbar ist.

Da nur Gleichströme fließen, werden auch nur magnetische Gleichfelder erzeugt. Durch die Anordnung und Verschaltung der Zellen eines Moduls und der Zusammenschaltung der Module können sich die Felder in wenigen cm Abstand verstärken oder abschwächen. Üblicherweise sind die Feldstärken in etwa 50 cm Entfernung bereits deutlich kleiner als das natürliche Magnetfeld.


Üblicherweise sind Wechselrichter in Metallgehäusen eingebaut, die eine gewisse abschirmende Wirkung aufweisen. Da insgesamt nur sehr schwache Wechselfelder erzeugt werden und die unmittelbare Umgebung der Wechselrichter keine Daueraufenthaltsbereiche darstellen, ist nicht mit umweltrelevanten Wirkungen zu rechnen.

Die Kabel zwischen Wechselrichter und Netz verhalten sich wie Kabel zu Großgeräten wie Elektroherd und Waschmaschine. Auch hier entstehen wiederum elektrische und magnetische Felder, die jedoch mit zunehmendem Abstand von der Quelle (= Leitung) rasch abnehmen.

Die erzeugte Solarenergie wird nach bisherigem Stand in das Mittelspannungsnetz eines Elektrizitätsversorgungsunternehmens eingespeist. Jeder PV-Freiflächenanlage ist einer
Transformatorstation (Trafostation) zugeordnet, mit deren Hilfe die auf der Niederspannungsebene erzeugte Elektroenergie in die Mittelspannungsebene transformiert wird. Von dort aus erfolgt der Transport zum Verknüpfungspunkt (Übergabestation) mit dem Netz des Elektrizitätsversorgungsunternehmens. Im Regelfall wird die Trafostation jedoch gleichzeitig als Übergabestation ausgerüstet.


**Mögliche Auswirkungen auf die Erholungseignung einer Landschaft durch visuelle Wirkungen**


Nennenswerte Konflikte mit den Belangen der landschaftbezogenen Erholung sind bei den bislang geplanten Anlagen zzt. jedoch noch nicht zu erkennen. Dafür verantwortlich sind zum einen anlagebedingte Faktoren (z. B. die im Vergleich zu Windkraftanlagen relativ geringe Höhe und gute Begrünbarkeit der Anlagen), standortbedingte Faktoren (z. B. die Beanspruchung bereits vorbelasteter Flächen), aber auch die Tatsache, dass die absolute Anzahl der Anlagen derzeit noch sehr gering ist und die bestehenden Anlagen von Erholungssuchenden z. T. noch als technische Attraktion gewertet werden.

Grundsätzlich lassen sich mit einer vorausschauenden Standortwahl mögliche Beeinträchtigungen der Erholungsfunktion, aber auch der Wohn- und Wohnumfeldfunktion regelmäßig vermeiden. Die durch große Solarparks mögliche technische Überprägung dörflicher Strukturen und Ortsrandsituationen ist ebenso zu vermeiden wie die Entwertung für die Erholung bedeutsamer landschaftlicher Freiräume.

**3.2.8 Kultur- und sonstige Sachgüter**

Durch die Anlage einer PV-Freiflächenanlage kann es zu einem Verlust von Bodendenkmalen kommen. Auch visuelle Beeinträchtigungen im Umfeld geschützter oder schützenswerter Kultur-, Bau- und Bodendenkmäler, die sich sowohl im dörflichen Siedlungskontext als auch im landschaftlichen Freiraum befinden, können nicht ausgeschlossen werden.

Aber auch hier lassen sich mit einer vorausschauenden Standortwahl mögliche Beeinträchtigungen von Kultur- und sonstigen Sachgütern regelmäßig vermeiden.

### 3.2.9 Übersicht / Checkliste zu möglichen Beeinträchtigungen

**Tab. 3-3: Mögliche Beeinträchtigungen der Schutzgüter durch PV-Freiflächenanlagen**

<table>
<thead>
<tr>
<th>Auftretende Wirkfaktoren</th>
<th>Mögliche Beeinträchtigungen</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Schutzgut Pflanzen</strong></td>
<td></td>
</tr>
<tr>
<td>Biotopfunktion/ Biotopverbundfunktion und Habitatfunktion</td>
<td></td>
</tr>
</tbody>
</table>
| Flächeninanspruchnahme (Bodenversiegelung, Bodenumlagerung, Aufbau der Module) | • Großflächige, baubedingte Schädigung der vorhandenen Vegetationsdecke durch Befahren, Verlegen von Leitungen  
• Kleinfächiger Verlust von Vegetationsstandorten durch Versiegelung  
• Möglicherweise Beeinträchtigung angrenzender (verbleibender) Biotopstrukturen durch den Baubetrieb  
• Beeinträchtigung von Vegetationsbeständen durch Aufbringen Standort untypischer Substrate (z. B. Schottermaterial) beim Bau von Baustraßen |
| Bodenverdichtung | • Nachhaltige Veränderung der abiotischen Standortfaktoren (z. B. zunehmende Staunässe) und damit Veränderung der Vegetationszusammensetzung |
| Überdeckung von Boden (Beschattung, Veränderung des Bodenwasserhaushaltes) | • Veränderung des Artenspektrums, Verlust lichtliebender Arten (z. B. bei Beanspruchung hochwertiger Trocken- oder Magerrasenbiotope auf Konversionsstandorten) |
| Stoffliche Emissionen | • Beeinträchtigung und Veränderung von Vegetationsbeständen  
→ Beeinträchtigungen sind nur im Einzelfall zu erwarten |
<p>| Mahd und Beweidung | • Veränderung der Vegetationsdecke gegenüber dem Ausgangszustand |</p>
<table>
<thead>
<tr>
<th>Auftretende Wirkfaktoren</th>
<th>Mögliche Beeinträchtigungen</th>
</tr>
</thead>
</table>
| **Temporäre Geräusche**                                                                  | • Störung / Vertreibung von Tieren durch Baulärm  
  ➔ betriebsbedingte Beeinträchtigungen durch Lärmimmissionen sind bei den derzeitigen Standards von PV-Freiflächenanlagen nicht zu erwarten |
| **Flächeninanspruchnahme** (Bodenversiegelung, Bodenumlagerung, Aufbau der Module)        | • Verlust und Beeinträchtigung von Arten und Lebensräumen (z. B. bei Beanspruchung von Ackerflächen mit Bedeutung als Lebensraum für Wiesenweide, Großtrappe, Feldhamster etc.)  
  • Veränderung / Störung angrenzender (verbleibender) Tierlebensräume (z. B. Großvogelbrutplätze)                                                                 |
<table>
<thead>
<tr>
<th>Auftretende Wirkfaktoren</th>
<th>Mögliche Beeinträchtigungen</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Schutzgut Boden</strong></td>
<td><strong>biotische Lebensraumfunktion, Speicher- und Regulationsfunktion von Böden</strong></td>
</tr>
</tbody>
</table>
| Bodenversiegelung | • Verlust und Minderung der natürlichen Bodenfunktionen (Lebensraumfunktion, Regelungs- und Speicherfunktion, Puffer- und Filterfunktion)  
• Verlust von Flächen mit Retentionsfunktion |
| Bodenverdichtung | • Veränderung der Bodenstruktur / des Bodengefüges und damit Verlust und Minderung der natürlichen Bodenfunktionen (Lebensraumfunktion, Regelungs- und Speicherfunktion, Puffer- und Filterfunktion)  
• Verlust des Retentionsvermögens |
| Bodenerosion | • Verlust und Minderung der natürlichen Bodenfunktionen (Lebensraumfunktion, Regelungs- und Speicherfunktion, Puffer- und Filterfunktion)  
→ Beeinträchtigungen sind nur im Einzelfall zu erwarten |
| **Stoffliche Emissionen** | • Belastung des Bodens durch Schadstoffeintrag  
• Veränderung der natürlichen Bodenfunktionen (Lebensraumfunktion, Regelungs- und Speicherfunktion, Puffer- und Filterfunktion)  
→ Beeinträchtigungen sind nur im Einzelfall zu erwarten |
| **Schutzgut Wasser** | **Grundwasserschutzfunktion und Regulationsfunktion im Landschaftswasserhaushalt** |
| Bodenversiegelung | Bodenverdichtung | • Verlust von Flächen mit Retentionsfunktion |
| **Stoffliche Emissionen** | • Belastung des Grundwassers durch Schadstoffeintrag  
• Minderung der Grundwasserqualität  
→ Beeinträchtigungen sind nur im Einzelfall zu erwarten |
| **Schutzgut Klima** | **Klimatische und lufthygienische Ausgleichsfunktion** |
| Bodenversiegelung | • Verlust klimarelevanter Strukturen  
• Veränderung der Strahlungsverhältnisse  
→ Beeinträchtigungen sind nur im Einzelfall zu erwarten |
| Überdeckung von Boden | • Veränderung des Mikroklimas unter den Modulen aufgrund von Überdeckungseffekten (ebenso wie über den Modulen durch Wärmeabgabe)  
• Reduzierung der Kaltluftproduktion  
• Störung von Kaltluft- und Frischluftbfluss  
→ Beeinträchtigungen sind nur im Einzelfall zu erwarten |
<table>
<thead>
<tr>
<th>Auftretende Wirkfaktoren</th>
<th>Mögliche Beeinträchtigungen</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Schutzgut Landschaft / Landschaftsbild</strong></td>
<td></td>
</tr>
<tr>
<td>Landschaftsbildfunktion</td>
<td></td>
</tr>
</tbody>
</table>
| Flächeninanspruchnahme / visuelle Wirkung | • Technische Überprägung von Landschaftsbildräumen (Maßstabsverlust, Dominanz technischer Elemente) und damit Veränderung der qualitativen Ausprägung (Vielfalt, Eigenart und Schönheit) von Landschaftsbildräumen  
• Verlust oder Überprägung von Landschafts- und Ortsbild prägenden und / oder kulturhistorisch bedeutenden Landschaftsausschnitten und -elementen  
• Verlust typischer Landnutzungsformen |
| Licht (Lichtreflexe) | • Beeinträchtigung der ästhetischen Wahrnehmung der Landschaft durch optische Störreize  
• Beeinträchtigung durch Reflexionen (Helligkeit der Flächen) |
| **Schutzgut Menschen** |
| Temporäre Geräusche, Erschütterungen, stoffliche Emissionen | • Beeinträchtigung des menschlichen Wohlbefindens durch Baubetrieb |
| Visuelle Wirkung | • Minderung der Erholungseignung von siedlungsnahen Freiräumräumen und Erholungsbe bieten durch technische Überprägung der Landschaft  
• Minderung der Qualität des Ortsrandbildes insbesondere bei Vorhandensein gewachsener dörflicher Strukturen |
| Einzäunung (Flächenentzug, Barrierefunktion) | • Verlust von siedlungsnahen Freiräumen  
• Verlust von Flächen mit Bedeutung für die landschaftsbezogene Erholung  
• Veränderung der Erreichbarkeit, Zugänglichkeit oder Erlebbarkeit von siedlungsnahen Freiräumen und Erholungsflächen |
| Kultur- und sonstige Sachgüter |
| Flächeninanspruchnahme / visuelle Wirkung | • Verlust von Bodendenkmalen  
• Technische Überprägung im Umfeld geschützter oder schützenswerter Kultur-, Bau- und Bodendenkmäler und damit Veränderung der qualitativen Ausprägung |
4  Kriterien für die Standortwahl / Standortsteuerung


4.1 Freiflächenkriterien des EEG - Koppelung der Vergütung an die vorherige Flächennutzung

Über die Höhe der erzielbaren Vergütung des Solarstroms sowie die Verknüpfung der Vergütung an bestimmte Standortanforderungen steuert der Gesetzgeber die Photovoltaiknutzung in mehreren Schritten.


Dass aus den weiteren Differenzierungen des EEG zur Freiflächenregelung auch eine unterschiedliche Gewichtung des jeweiligen öffentlichen Interesses und damit eine Art „Rangfolge“ der Freiflächentypen für Planung und Genehmigung der Anlagen abzuleiten ist, wird bis-

\(^8\) z. B. BayVGH, Urt. v. Urt. v. 05.07.2005 – 8 B 04.356
lang nur vom REGIERUNGSPRÄSIDIUM FREIBURG (2004) vertreten. Überwiegend wird aber da-
von ausgegangen, dass die verschiedenen vom EEG für die PV-Nutzung vorgesehenen
Nutzungstypen in einem Gleichrangigkeitsverhältnis stehen.

Mit der Koppelung der Vergütungszahlung an die Art der Vornutzung (bereits versiegelte
Fläche, Konversionsfläche, Ackerland) sollen jeweils umweltbezogene Ziele realisiert wer-
den.

Mit der Präferenz für versiegelte Flächen soll dem Bodenschutz entsprochen und der Zu-
nahme der Flächeninanspruchnahme entgegen gewirkt werden. Zu den versiegelten Flächen
werden vergütungsrechtlich auch Deponien, Aufschüttungen oder Lagerplätze gezählt.

Als Konversionsflächen gelten Standorte, auf denen die negativen Folgen der vorhergehen-
den militärischen oder wirtschaftlichen Nutzung noch fortdauern. Hierzu gehören vor allem
Abraschänderfeld, ehemalige Tagebaugebiete, Truppenübungsplätze und Munitionsdepots. In
der Begründung zum EEG wird dargestellt, dass die unterstellten nachteiligen Wirkungen
derer Standorte noch vorhanden sein müssen.

An die Nutzung von Ackerflächen ist die Bedingung geknüpft, sie anschließend als Grünland
zu entwickeln und damit „zur Verminderung der Bodenerosion und der Verbesserung der
Aufnahmefähigkeit von Niederschlagswasser“ beizutragen. In der Begründung zum Gesetz-
entwurf des novellierten EEG wird davon ausgegangen, dass Ackerland im Sinne von § 11
Abs. 4 Ziff. 3 EEG nur dann gegeben sei, wenn auf den Flächen zuvor mindestens drei Jahre
lang Ackerbau betrieben wurde. Eine Differenzierung bzw. Einschränkung der Nutzung von
Ackerflächen z. B. aufgrund deren besonderen Bodengüte ist dort nicht zu finden.

In der Praxis hat sich gezeigt, dass die Freiflächenregelung des EEG als „Grobfilter“ für die
Standortauswahl von PV-Freiflächenanlagen gut geeignet ist. Sie lenkt die Suche insbeson-
dere auf durch militärische oder industrielle Vornutzungen stofflich belastete oder intensiv
landwirtschaftlich genutzte Flächen. Im Sinne der Umweltvorsorge müssen diese Bestim-
mungen aber weiter ausdifferenziert werden, um die tatsächlich relativ unproblematischen
Flächentypen besser eingrenzen zu können. In den Bundesländern Bayern, Baden-
Württemberg, Brandenburg und Schleswig-Holstein sind daher bereits weitergehende Krite-
rrien (u. a. Ausschluss- und Eignungskriterien) erarbeitet worden, die bei der Standortsuche
und Standortbewertung von PV-Freiflächenanlagen herangezogen werden können (z. B.
BAYRISCHES LANDESAMT FÜR UMWELTSCHUTZ 2004, REGIERUNGSPRÄSIDIUM FREIBURG 2004,
LANDESUMWELTAMT BRANDENBURG 2004, REGIONALER PLANUNGSVERBAND WESTSACHSEN
2004, INNENMINISTERIUM SCHLESWIG-HOLSTEIN et al. 2006). Von Bedeutung ist auch das ge-
meinsame Positionspapier der Unternehmensvereinigung Solarwirtschaft (UVS) und dem
Naturschutzbund Deutschland (NABU), in dem Kriterien für naturverträgliche Photovoltaik-
Freiflächenanlagen erarbeitet wurden (UVS & NABU 2005).

9 Deutscher Bundestag 2004, BT-Drucks. 15/2864, S. 45
4.2 Energiewirtschaftliche Aspekte bei der Standortplanung

Belange von Natur und Landschaft sind bei einer PV-Freiflächenplanung regelmäßig mit den nachfolgend genannten energiewirtschaftlichen Anforderungen abzustimmen bzw. in Einklang zu bringen (vgl. Tab. 4-1).

Tab. 4-1: Technische und wirtschaftliche Kriterien bei der Planung von PV-Freiflächenanlagen

<table>
<thead>
<tr>
<th>Technische und wirtschaftliche Kriterien</th>
<th>Natürliche Standortfaktoren</th>
<th>Infrastruktur</th>
<th>Sonstiges</th>
</tr>
</thead>
<tbody>
<tr>
<td>• möglichst hohe Globalstrahlung</td>
<td>• gute Anbindung an die benötigte Infrastruktur (Verkehrswege, Netzeinspeisung)</td>
<td>• möglichst geringe Landbeschaffungskosten (vorrangig Pacht)</td>
<td></td>
</tr>
<tr>
<td>• günstiger Einstrahlwinkel durch eine möglichst nach Süden hin exponierte Lage</td>
<td>• Lage des nächsten Einspeisepunktes des EVU</td>
<td>• möglichst ein Eigentümer bzw. einfache Eigentumsverhältnisse</td>
<td></td>
</tr>
<tr>
<td>• Vermeidung von Verschattung z. B. durch umliegende Wälder oder Gebäude,</td>
<td>• aktuelle Netzauslastung (insb. Mittelspannungsnetze)</td>
<td>• Möglichkeit der langfristigen Nutzung / Pachtung (mind. 20 Jahre)</td>
<td></td>
</tr>
<tr>
<td>• keine Nebellagen</td>
<td></td>
<td>• Akzeptanz / Rückhalt bei Politikern, Verwaltung und Bevölkerung</td>
<td></td>
</tr>
<tr>
<td>• günstige Bodenbeschaffenheit (wichtig für die Wahl der Verankerung)</td>
<td></td>
<td>• möglichst schnelle Projektabwicklung wg. jährlicher Degression der Vergütung</td>
<td></td>
</tr>
</tbody>
</table>

Sofern keine für die energetische Produktion nachteilige Verschattungen auftreten, sind PV-Freiflächenanlagen aus technischer Sicht im Allgemeinen kaum standortgebunden, d. h. sie müssen nicht zwangsläufig an einem bestimmten Punkt angeordnet werden.10

4.3 Naturschutzfachliche Aspekte bei der Standortwahl

Entscheidend für eine umweltverträgliche Ausgestaltung von PV-Freiflächenanlagen ist eine sorgfältige Standortwahl. Bei richtiger Standortwahl wird die Wahrscheinlichkeit einer nachhaltigen Beeinträchtigung der Umwelt gering sein.

---

10 Hinweis für Vorhaben, die keinen Bebauungsplan erfordern: Im Sinne von § 35 Abs. 1 Ziff. 3 BauGB sind sie deshalb nicht als ortsgebunden zu bewerten. Auch sind sie nicht aus anlagenspezifischen Gründen nur im Außenbereich verwirklichbar (vgl. § 35 Abs. 1 Ziff. 5 BauGB). Im Übrigen greift auch § 35 Abs. 1 Ziff. 3 BauGB nicht als Privilegierung, selbst wenn der erzeugte Strom in das öffentliche Versorgungsnetz eingespeist wird und er damit (mittelbar) der öffentlichen Versorgung dient. Auch solche Energieerzeugungsanlagen unterliegen dem Gebot der größtmöglichen Schonung des Außenbereichs und sind daher nur dann über § 35 Abs. 1 Ziff. 3 BauGB privilegiert, wenn sie aus anlagenspezifischen Gründen nur im Außenbereich verwirklicht werden können (so BVerwGE 96, 95 für Windkraftanlagen, weshalb für diese ein gesonderter Privilegierungsstatbestand in § 35 Abs. 1 Ziff. 6 BauGB geschaffen wurde).
Für die Errichtung von PV-Freiflächenanlagen grundsätzlich geeignet sind Flächen, die eine hohe Vorbelastung aufweisen und auf denen folglich keine oder nur geringe Beeinträchtigungen der Umwelt zu erwarten sind. Aufgrund der potenziellen negativen Auswirkungen von PV-Freiflächenanlagen sind dies insbesondere Flächen,

- deren Biotopfunktion, Biotopverbundfunktion und Habitatfunktion (z. B. durch Lärm) bereits wesentlich beeinträchtigt ist,
- deren Bodenfunktionen (z. B. durch Versiegelung, Bodenverdichtung oder Kontamination) stark belastet sind,
- deren Landschaftsbild durch Bebauung und andere technische Objekte wie Verkehrswege etc. bereits erheblich verfremdet ist und das somit unempfindlich ist gegenüber den Wirkungen des Vorhabens,
- deren Bebauung keinen weiteren Verlust von Freiraum darstellt.

Tab. 4-2 enthält als Hinweis eine Zusammenstellung von Flächen, die die genannten Merkmale erfüllen und sich folglich für die Errichtung einer PV-Freiflächenanlage vorrangig eignen.

### Tab. 4-2: Bereiche mit geringem Konfliktpotenzial (Eignungsbereiche)

<table>
<thead>
<tr>
<th>Bereiche mit geringem Konfliktpotenzial (Eignungsbereiche)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Flächen im Innenbereich</strong></td>
</tr>
<tr>
<td>• Siedlungsbrachen (sofern sie nicht für höherrangige Nutzungen im Zuge der Innenentwicklung genutzt werden können)</td>
</tr>
<tr>
<td>• Versiegelte Flächen (Stellplätze u. a.), gesicherte Altlasten</td>
</tr>
<tr>
<td>• Gewerbe- und Industriegebiete</td>
</tr>
<tr>
<td><strong>Flächen im Außenbereich</strong></td>
</tr>
<tr>
<td>• Standorte, die eine Vorbelastung mit großflächigen technischen Einrichtungen im räumlichen Zusammenhang aufweisen (z. B. Flächen im räumlichen Zusammenhang mit größeren Gewerbeansiedlungen)</td>
</tr>
<tr>
<td>• Pufferzonen entlang großer Verkehrsstrassen, Lärmschutzeinrichtungen</td>
</tr>
<tr>
<td>• Abfalldeponien und Halden</td>
</tr>
<tr>
<td>• Konversionsflächen mit hohem Versiegelungsgrad ohne besondere ökologische oder ästhetische Funktionen</td>
</tr>
<tr>
<td>• sonstige brachliegende ehemals baulich genutzte Flächen</td>
</tr>
</tbody>
</table>


Bei Planungen im Außenbereich sollte eine Bündelung mit anderen technischen Einrichtungen angestrebt werden. Bisher nicht oder wenig zersiedelte Landschaftsräume sollten freigehalten werden. Diese Anforderung ergibt sich aus den Grundsätzen des Naturschutzes und der Landschaftspflege (§ 2 Abs. 1 Ziff. 11 und 12 BNatschG). Ziff. 11 besagt, dass unbebaute Bereiche wegen ihrer Bedeutung für den Naturhaushalt und für die Erholung insge-


Der Bau von Solaranlagen auf naturschutzfachlich hochwertigen Konversionsstandorten kann nur dann vertreten werden, wenn für eine andere landschaftsverträgliche Nutzung keine realistische Option besteht (z. B. aufgrund hoher Sanierungskosten für Altlasten oder hoher Pflegekosten) und mit den erforderlichen Kompensationsmaßnahmen andere vorbelaste-te Landschaftsteile aufgewertet werden können [LANDESUMWELTAMT BRANDENBURG 2004].

Das in § 11 Abs. 4 Ziff. 3 EEG benannte Freiflächenkriterium „früheres Ackerland“ ist hinsichtlich seiner Eignung als Standort für PV-Freiflächenanlagen ebenfalls einer differenzierten Betrachtung zu unterwerfen. Ackerflächen stellen unter den bestehenden intensiven Bewirtschaftungsformen für viele Arten (z. B. der Feldvögel und Feldkäfer) einen ungünstigen Lebensraum dar. Sie bieten sich daher gemäß der gesetzlichen Wertung grundsätzlich als Standorte für PV-Freiflächenanlagen an, zumal vielfach mit deutlichen Aufwertungseffekten zu rechnen ist. Ackerflächen können jedoch auch heute noch (z. B. als Nahrungsgebiet für Durchzügler und Wintergäste unter den Vögeln) eine wichtige Rolle spielen. Aus Sicht des Arten- und Biotopschutzes können Ackerlandschaften somit aufgrund besonderer funktions-ökologischer Aspekte unter bestimmten Umständen einen hohen naturschutzfachlichen Wert erreichen. Insbesondere sind dies:

- Gebiete mit Bedeutung als Rast- und Nahrungsfläche für Zugvögel (v. a. herbivore Gänse und Enten, Kraniche und Limikolen),
- Gebiete mit Bedeutung als (traditionelles) Fortpflanzungsgebiet für stark bedrohte Arten (z. B. Großtrappe, Wiesenweihe, Feldhamster),
- Gebiete mit standörtlichen Besonderheiten wie z. B. Extensiväcker (Kalkscherbenäcker im Jura und Muschelkalk) oder Äcker mit einer hohen Dichte eingestreuter Inselbiotope,
- Gebiete mit Bedeutung als wichtiger Teil Lebensraum oder wichtige Verbundachse für besonders schutzwürdige Arten aus angrenzenden Gebieten (z. B. Jagdgebiet Rotmilan, Verbindungskorridor zwischen Gewässern z. B. für Biber, Fischotter),
• Gebiete mit Pufferfunktion zu Kernlebensräumen hochsensibler Arten (z. B. Großvogelbrutplätze o. Ä.).

Ackerflächen, die die genannten Kriterien erfüllen, sind aus Sicht des Arten- und Biotopschutzes als Bereiche hoher Empfindlichkeit für PV-Freiflächenanlagen in aller Regel als Standort für Solarparks auszuschließen.


Die beschriebenen Kriterien zur Kennzeichnung von Flächen, die von PV-Freiflächenanlagen freigehalten werden sollten, werden in Tab. 4-3 zusammenfassend dargestellt. Dabei wird vorausgesetzt, dass aufgrund der Vergütungsregelung des EEG ausschließlich die dort genannten Flächenkategorien betroffen sind. Hierbei handelt es um Restriktionsbereiche, die einer einzelfallbezogenen Betrachtung bedürfen und im Regelfall für eine PV-Freiflächenanlage ungeeignet sind. Auch sollte diese Auflistung auf Länderebene ggf. konkretisiert bzw. an länderspezifische Anforderungen angepasst werden.
Tab. 4-3: Empfohlene Ausschlussbereiche (Restriktionsbereiche)

<table>
<thead>
<tr>
<th>Schutzgut</th>
<th>Gebietstyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflanzen / Tiere / Biologische Vielfalt</td>
<td>Gebiete, die aufgrund von EU-Richtlinien oder internationalen Übereinkommen einem besonderen Schutz unterliegen</td>
</tr>
<tr>
<td></td>
<td>Bereiche mit besonders geschützten Biotopen (§ 30c BNatSchG und entsprechende Vorschriften der Landesnaturschutzgesetze)</td>
</tr>
<tr>
<td></td>
<td>Lebensräume im Bestand bedrohter Arten (einschließlich der Räume für Wanderungen) (z. B. Brutgebiete gefährdeter Wiesenbrüterarten, Rastzentren für Kraniche und Gänsearten)</td>
</tr>
<tr>
<td></td>
<td>Gebiete mit einer besonderen Ausstattung an natürlichen oder naturnahen Lebensräumen mit einer speziellen Vielfalt an Arten- und Lebensgemeinschaften (einschließlich der Räume für Wanderungen)</td>
</tr>
<tr>
<td>Boden</td>
<td>Bereiche mit Böden (regional) hoher natürlicher Ertragsfähigkeit sowie naturnahe oder kulturhistorisch bedeutsame Böden</td>
</tr>
<tr>
<td></td>
<td>Bereiche mit Böden hoher Eignung für die Entwicklung besonderer Biotope (Extrembiotope)</td>
</tr>
<tr>
<td>Wasser</td>
<td>Natürliche oder tatsächliche Überschwemmungsgebiete, Gebiete für den vorbeugenden Hochwasserschutz</td>
</tr>
<tr>
<td>Klima / Luft</td>
<td>Gebiete mit klimatische Ausgleichsfunktion (Kaltluftentstehung, Kaltluftabfluss)</td>
</tr>
<tr>
<td></td>
<td>Luftaustauschbahnen zwischen belasteten und unbelasteten Bereichen</td>
</tr>
<tr>
<td>Landschaft</td>
<td>Landschaftsbildbereiche mit einer charakteristischen Eigenart, Vielfalt und Schönheit</td>
</tr>
<tr>
<td></td>
<td>Gebiete mit kleinfäligem Wechsel der Nutzungsarten und –intensitäten</td>
</tr>
<tr>
<td></td>
<td>Kulturhistorisch bedeutsame Landschaftsräume</td>
</tr>
<tr>
<td></td>
<td>Unzerschnittene Landschaftsräume</td>
</tr>
<tr>
<td>Mensch</td>
<td>Gebiete mit Bedeutung für die siedlungsnahe Erholung (Grünflächen, Grünzüge etc.)</td>
</tr>
<tr>
<td></td>
<td>Erholungsschwerpunkte für die landschaftsbezogenen Erholung (Sichtbereiche von Aussichtspunkten, Hauptaufenthaltsorte von Urlaubern oder Hauptwanderwege)</td>
</tr>
</tbody>
</table>

Sollte dennoch ein Vorhaben in einem der benannten Restriktionsbereiche realisiert werden, wäre zu bedenken, dass

- der Untersuchungsumfang und Planungsaufwand deutlich höher ausfallen wird (s. a. Kap. 7.1 und Anhang 4),
- der Umfang der vom Vorhabensträger beizubringenden Unterlagen größer wird (z. B. FFH-Verträglichkeitsprüfungen, Artenschutzbeiträge),
der Umfang erforderlicher Kompensationsmaßnahmen deutlich höher ausfallen wird,

das Genehmigungsverfahren einen längeren Zeitraum in Anspruch nehmen wird,

darüber hinaus auch ein höheres Risiko hinsichtlich einer positiven Entscheidung für das Vorhaben im Bauleitplanverfahren bestehen kann

und damit im Fazit insgesamt höhere Planungskosten entstehen können (vgl. Tab. 4-2).
5 Planung und Zulassung von PV-Freiflächenanlagen

5.1 Räumliche Steuerung

5.1.1 Steuerung durch die Raumordnung


Die Raumordnung als Querschnittsaufgabe muss die verschiedensten Belange berücksichtigen. Für die raumordnerische Abwägungsentscheidung bei der Planung von PV-Freiflächenanlagen sind einerseits Zielaussagen relevant, die die Bedeutung einer nachhaltigen Energieerzeugung betonen (Klimaschutz, Erneuerbare Energien sowie Wirtschaftsförderung). Andererseits sind freiraumbezogene Zielaussagen von Bedeutung, die im Hinblick auf den Bau relevanter Infrastruktur Restriktionen oder relative Bevorzugungen erkennen lassen.

Regionalpläne mit ihrem System aus räumlichen Funktionszuweisungen unterschiedlicher Bindungswirkungen enthalten in Bezug auf jegliche bauliche Aktivität, also auch bzgl. der Planung einer PV-Freiflächenanlage räumliche Steuerungswirkung. Die vorhandenen raumordnerischen Instrumente (Ziele und Festsetzungen in Plänen und Programmen, Raumordnungsverfahren) ermöglichen die raumordnerische Beurteilung und Steuerung von einzelnen PV-Freiflächenanlagen.

Daraus wird deutlich, dass die Raumordnungsbehörden für die Standortsuche wichtige Informationen liefern und auch beratend unterstützen können. Somit können bereits im Vorfeld die im Kapitel 4 beschriebenen Standortkriterien berücksichtigt und auf der Suche nach einem geeigneten Standort mögliche Eignungsstandorte eingegrenzt werden.


27.11.2007 Seite 50
In Regionen mit geringer Eignung und /oder wenig Nachfrage nach großen Flächen zum Bau von PV-Freiflächenanlagen wird kein Handlungsbedarf gesehen.


Hervorzuheben sind folgende Beispiele:

- In der Planungsregion Westsachsen gibt es eine Handreichung „Regionalplanerische Beurteilung von Vorhaben zur großflächigen Nutzung“ (REGIONALER PLANUNGSVERBAND WESTSACHSEN – REGIONALE PLANUNGSSTELLE, Stand 30.06.2004).
- In der Region Mittlerer Oberrhein (Karlsruhe) wird an einem Vorrangflächenkonzept für die PV-Nutzung gearbeitet.
- Im „Erneuerbare-Energien-Konzept für die Region Rheinpfalz“ gibt der Raumordnungsverband Rhein-Neckar Hinweise und auch planerische Empfehlungen zum Ausbau regenerativer Energien (Hrsg.: PLANUNGSGEMEINSCHAFT RHEINPFALZ 2005).
- Der „Energieatlas“ für die Region Lausitz-Spreewald stellt die regionale Verteilung der energierelevanten Standorte dar und beschreibt detailliert jeden einzelnen bestehenden und geplanten Standort für sämtliche in der Region vertretenen Energieträger (REGIONALE PLANUNGSGEMEINSCHAFT LAUSITZ-SPREEWALD 2006).
- Die Regionale Planungsgemeinschaft Uckermark-Barnim (Brandenburg) untersucht die Möglichkeiten, die Auswirkungen der verschiedenen EE-Nutzungen (Windkraft, Solarenergie, Biogas, Rohstoffe für Biokraftstoffe) auf Flächeninanspruchnahme und Kulturlandschaft mit Hilfe regionalplanerischer Instrumente zu steuern.


Auch die Gewichtung des Ausbaus und der Entwicklung erneuerbarer Energien und insbesondere der Photovoltaik erfolgt in den Landesentwicklungsprogrammen der Länder unterschiedlich. Während Bayern im LEP 200611 die verstärkte Erschließung und Nutzung lediglich als Grundsatz der Raumordnung allgemein bestimmt (vgl. LEP B V 3.6), wird z. B. in Nordrhein-Westfalen im Landesentwicklungsplan12 die stärkere Nutzung Erneuerbarer Energien als Ziel formuliert (vgl. LEP NRW D II 2.1 und 2.4).

5.1.2 Standortsteuerung in der Bauleitplanung

Für PV-Freiflächenanlagen ist zwischen Anlagen an oder auf baulichen Anlagen, die keine Gebäude sind und Anlagen in der freien Fläche zu unterscheiden.

Anlagen an oder auf baulichen Anlagen, die keine Gebäude sind

Soweit Anlagen an oder auf baulichen Anlagen errichtet werden, die keine Gebäude sind, besteht für diese ohne weitere Vorgabe aus dem EEG eine Vergütungspflicht. § 11 Abs. 2 und Abs. 3 EEG nehmen insoweit auf die geläufigen Begriffsdefinitionen in den jeweiligen Landes-Bauordnungen Bezug. Hier sind vorrangig Anlagen an Schallschutzwänden, auf Dämmen oder auf Kraftfahrzeugstellplätzen erfasst. Für diese Anlagen bedarf es keines Bebauungsplans oder einer sonstigen fachplanerischen Grundlage. Von daher fehlen für diese Anlage gesonderte Planungsinstrumente zur Standortsteuerung. Die genannten Standortbei-
sowie sind aber offenkundig hinsichtlich der Umweltauswirkungen und der Eingriffe in Natur und Landschaft eher unkritisch, so dass der Gesetzgeber insoweit die Standortentwicklung allein den Interessen der Eigentümer und Nutzer unterwirft.

**Anlagen in der freien Fläche („echte“ Freiflächenanlagen)**

Soweit eine Anlage aber nicht an oder auf baulichen Anlagen errichtet wird („echte“ Freiflächenanlage), setzen § 11 Abs. 3 Ziff. 1 i. V. m. Abs. 4 EEG für das Entstehen der Einspeisevergütungspflicht voraus, dass eine Anlage im Geltungsbereich eines Bebauungsplanes errichtet wird. Mit dieser Regelung will der Gesetzgeber erreichen, dass ökologisch sensible Flächen nicht überbaut werden und durch die Beteiligung der Öffentlichkeit eine möglichst große Akzeptanz vor Ort erreicht wird. Die Gemeinde wird auf diesem Wege gezwungen, die Standorte für eine PV-Freiflächenanlage selber im Wege einer eigenen Planungsentscheidung zu bestimmen. Sie kann und soll damit eine aktive Rolle bei der Standortplanung übernehmen.


In der Praxis treten Investoren vielfach schon mit einem konkreten Vorhaben auf einer bestimmten Fläche an die Gemeinde heran. Die zur Erlangung der Einspeisevergütung dann obligatorische Bauleitplanung (Flächennutzungsplan und Bebauungsplan) darf aber nicht einfach wegen der Vorgaben des Investors die Standortfragen „übergehen“. Die Gemeinde ist rechtlich an diese Standortvorgaben nicht gebunden und sollte die Interessen der Betreiber stets gesamtheitlichen Interessen gegenüber stellen. Eine Bauleitplanung muss deshalb zumindest im Wege eines nachvollziehenden Aktes die Auswahlkriterien für Standorte und Alternativen behandeln.

**5.1.3 Bedeutung der Landschaftsplanung bei der Standortsteuerung**

Bei einer Prüfung von Standortalternativen auf der Ebene der vorbereitenden Bauleitplanung (Flächennutzungsplan) liefert die Landschaftsplanung mit ihren fachlichen Instrumenten

- Landschaftsrahmenplan – auf Regierungsbezirks- oder Kreisebene und
- Landschaftsplan – auf Gemeindeebene
wesentliche Informations- und Bewertungsgrundlagen zur Berücksichtigung der Belange gem. § 1 Abs. 5 BauGB „Schutz und Entwicklung der natürlichen Lebensgrundlagen“, „Erholung“, „Gestaltung des Orts- und Landschaftsbildes“ sowie „Naturschutz und Landschaftspflege, insbesondere Naturhaushalt, Wasser, Luft, Boden und Klima“.


Derzeit ist eine Gemeinde aber nicht gezwungen, die Entwicklung von PV-Freiflächenanlagen bereits „vorbeugend“ in die eigene Landschaftsplanung bzw. Flächennutzungsplanung zu integrieren. Aufgrund der Vorgaben des § 11 Abs. 3 Ziff. 1 i. V. mit Abs. 4 EEG können sich PV-Freiflächenanlagen jedenfalls in der Regel nur im Konsens mit der Gemeinde entwickeln. Dadurch unterscheidet sich die Standortfindung grundsätzlich z. B. vom Windkraftanlagen, die aufgrund ihrer Privilegierung nach § 35 Abs. 1 Ziff. 5 BauGB bei fehlender Bauleitplanung gerade auch gegen den Willen der Gemeinde errichtet werden können.

Will eine Gemeinde, ohne dass bereits konkrete Investoren vorstellig sind, von sich heraus die Errichtung von großflächigen PV-Freiflächenanlagen fördern, ist sie natürlich nicht gehindert, im Flächenmanagement des Landschaftsplanes bzw. des Flächenutzungsplans hierfür investorengünstige Vorbereitungen zu treffen (Angebotsplanung). Derartige Strategien sind bislang aber in der Praxis nahezu nicht zu beobachten.

5.2 Genehmigungsverfahren


PV-Freiflächenanlagen sind unabhängig von ihrer Größe nicht der immissionsschutzrechtlichen Genehmigungspflicht unterworfen. Sie sind nicht in der 4. BImSchV aufgeführt. Sie benötigen auch nicht die Durchführung einer Umweltverträglichkeitsprüfung oder einer Vorprüfung nach § 3c UVPG, denn sie sind nicht in Anlage 1 zum UVPG aufgeführt.

In den meisten Bundesländern wurden für wirtschaftliche Investitionsvorhaben Regelungen zur Beschleunigung von Genehmigungsverfahren geschaffen (z. B. Art. 71a ff. BayVwVfG).

27.11.2007

Seite 54
Die dort geregelten Beschleunigungsinstrumente sind teilweise von Antragsstellungen abhängig (z. B. Antragskonferenz), teils obligatorisch (z. B. Mitteilung über die Vollständigkeit der Antragsunterlagen).

Der Genehmigungsablauf im Übrigen entspricht demjenigen sonstiger gewerblicher Bauvorhaben. Soweit Baugenehmigungsverfahren parallel zum Verfahren der Aufstellung des erforderlichen Bebauungsplans durchgeführt werden, ist auch die Erteilung einer vorzeitigen Baugenehmigung nach § 33 Abs. 1 BauGB ab sog. formeller Planreife möglich. Dies ist auch in den Fällen des § 11 Abs. 4 EEG nicht vergütungsschädlich, sofern jedenfalls zum Zeitpunkt der Inbetriebnahme der zugrundeliegende Bebauungsplan in Kraft getreten ist. Aus § 11 Abs. 3 EEG gibt sich, dass die Inbetriebnahme auf einen rechtskräftigen Bebauungsplan absteht, nicht aber der Baubeginn oder die Baufertigstellung.

Nicht Gegenstand der bauaufsichtlichen Genehmigung ist die Prüfung, ob die gesetzlichen Voraussetzungen für eine Vergütungspflicht nach § 11 Abs. 3 bzw. Abs. 4 BauGB erfüllt sind. Die Regelungen des EEG sind insoweit reines Preisrecht, d. h. ihre Einhaltung obliegt allein der Verantwortung des Investors. Die Prüfung der Vergütungsvoraussetzungen erfolgt nur durch das EVU, in dessen Netz die Stromeinspeisung begehrt wird. Im Streitfall sind die Zivilgerichte anzurufen (vgl. § 12 EEG).

### 5.3 Bauleitplanung für PV-Freiflächenanlagen

PV-Freiflächenanlagen besitzen keine Privilegierung nach § 35 Abs. 1 BauGB. Ob sie im Einzelfall als sonstiges Vorhaben nach § 35 Abs. 2 BauGB zulässig sein können, spielt für Vorhaben im Außenbereich keine praktische Rolle. Zwar kommt auch solchen Anlagen unabhängig von den Voraussetzungen des § 11 Abs. 3 und Abs. 4 EEG ein Anspruch auf Einspeisung des Stroms in das Netz nach § 4 Abs. 1 EEG zu. Der wirtschaftlich wichtige Anspruch auf eine Mindestvergütung kann für Anlagen im bisherigen Außenbereich jedoch nur unter Erfüllung der Anforderungen des § 11 Abs. 3 Ziff. 1 i. V. mit Abs. 4 EEG erreicht werden.

**Bebauungsplan**

Soweit zur Erlangung des besonderen Vergütungsanspruchs nach § 11 Abs. 3 BauGB ein Bebauungsplan erforderlich ist, kommen hierfür

- qualifizierte Bebauungspläne nach § 30 Abs. 1 BauGB,
- vorhabenbezogene Bebauungspläne nach § 30 Abs. 2 i. V. mit § 12 BauGB und
- einfache Bebauungspläne nach § 30 Abs. 3 BauGB in Betracht.

Eine Beschränkung des § 11 Abs. 3 Ziff. 1 EEG auf qualifizierte Bebauungspläne lässt sich nicht begründen¹³ und ist vom Normzweck auch nicht erforderlich. Alle vorgenannten Typen

---

¹³ vgl. auch ALTROCK/OSCHMANN/THEOBALD, § 11 EEG, Rn. 55

Festsetzungen im Bebauungsplan

§ 11 Abs. 4 EEG gibt drei alternative Fälle Bebauungspläne vor. Gemeinsam ist, dass in allen Fällen der Zweck des Bebauungsplans zumindest auch auf die Errichtung der PV-Freiflächenanlage gerichtet sein muss. Der Bebauungsplan muss sich daher im Umg riff nicht auf die PV-Freiflächenanlage beschränken, sondern darf auch andere Inhalte haben (z. B. Ausweisung eines Gebietes für Gewerbe und Energiegewinnung, wobei eine Teilfläche für die Errichtung einer PV-Freiflächenanlage vorgesehen ist).


Aus diesem Grunde kommt auch in den Fällen der Konversion ehemaliger Gewerbegebiete nach § 11 Abs. 4 Ziff. 2 EEG nicht in Betracht, die frühere Festsetzung als Gewerbegebiet beizubehalten und auf eine Änderung des Bebauungsplans zu verzichten. Bauplanungsrechtlich wäre dies nicht ausreichend, weil die Nachnutzung durch eine PV-Freiflächenanlage regelmäßig nicht von der ursprünglichen planerischen Abwägung gedeckt ist. Zudem würde dies auch nicht zum Vergütungsanspruch führen, weil der Bebauungsplan nach § 11 Abs. 4 EEG gerade auch auf die Errichtung der PV-Freiflächenanlage gerichtet sein muss.

Auch eine Festsetzung als private Grünfläche nach § 9 Abs. 1 Ziff. 15 BauGB ist im Fall des § 11 Abs. 4 Ziff. 3 EEG nicht möglich. Der Begriff „Grünland“ ist ein eigenständiger Begriff des EEG und stellt nicht auf § 9 Abs. 1 Ziff. 15 BauGB ab. Grünflächen dienen im Hauptzweck der Schaffung „grüner“ Flächen, so dass andere Nutzungen auf diesen Flächen (z. B. Spielplätze, Kleingärten) nur soweit zulässig sind, wie dadurch dieser Hauptzweck nicht be-
einträchtigt wird. Bei PV-Freiflächenanlagen steht aber die Schaffung von „grünen“ Flächen nicht im Vordergrund. Auch werden die in Anspruch genommenen Flächen durch die Anlagen dominiert.

**Begleitender städtebaulicher Vertrag**

Soweit die Bauleitplanung durch vorhabenbezogenen Bebauungsplan erfolgt, bedarf dieser nach § 12 Abs. 1 Satz 1 BauGB eines Durchführungsvertrages. Die Planung durch vorhabenbezogenen Bebauungsplan bietet für die Errichtung von PV-Freiflächenanlagen Vorteile. So wird im Durchführungsvertrag regelmäßig bestimmt, dass die Planung auf Kosten des Investors durch ein von ihm zu beauftragendes Planungsbüro beizubringen ist. Auch werden regelmäßig Vereinbarungen über die Erschließung aufgenommen. Es bietet sich auch an, im Durchführungsvertrag die Verlegung der Anschlussleitungen zum Einspeisepunkt in das Netz des EVU zu regeln, wenn hierzu gemeindliche Flächen, insbesondere öffentliche Wege in Anspruch genommen werden sollen.

In den Durchführungsvertrag können weiterhin Regelungen über Rückbauverpflichtungen und deren Sicherung (Rückbaubürgschaften) aufgenommen werden.

Der Abschluss eines begleitenden städtebaulichen Vertrages nach § 11 BauGB ist aber auch dann zu empfehlen, wenn nicht das Instrument des vorhabenbezogenen Bebauungsplans gewählt, sondern ein qualifizierter oder einfacher Bebauungsplan aufgestellt wird. Auch in diesem Fall sind Regelungen über die Übernahme von Planungskosten, Erschließungen, Verlegung der Netzanschlussleitungen und Rückbauverpflichtungen sinnvoll und zulässig.

**Flächennutzungsplan**

Das Entwicklungsgebot des § 8 Abs. 2 Satz 1 BauGB ist zu beachten. Da regelmäßig der Flächennutzungsplan für den unbebauten Bereich keine Darstellungen für die Errichtung von PV-Freiflächenanlagen enthält, bietet sich zur Beschleunigung der Planungsverfahren die Durchführung des Parallelverfahrens nach § 8 Abs. 3 Satz 1 BauGB an. Insoweit ist üblicherweise eine auf die PV-Freiflächenanlage beschränkte Änderung des Flächennutzungsplans ausreichend, sofern dies mit einer Beachtung der allgemeinen Grundsätze und Ziele der Bauleitplanung vereinbar ist (vgl. § 1 Abs. 5 BauGB).

Soweit im bislang unbebauten Bereich eine PV-Freiflächenanlage errichtet werden soll, wird eine Aufstellung oder Änderung des Flächennutzungsplans zur Sicherstellung der ordnungsgemäßen städtebaulichen Entwicklung wohl nicht verzichtbar sein. § 8 Abs. 2 Satz 2 BauGB bietet in der Regel keine ausreichende Grundlage für den Verzicht auf einen Flächennutzungsplan.14

Auch § 8 Abs. 4 Satz 1 BauGB gibt keine ausreichende Grundlage für den Verzicht auf eine Aufstellung oder Änderung des Flächennutzungsplans. Der Wunsch des Investors auf schnelle Planung und Genehmigung, um ggf. vor dem Greifen einer bestimmten Degressi-

---

14 vgl. auch LÖHR, in: BATTIS/KRAUTZBERGER/LÖHR, § 8 BauGB, Rn. 7
onsstufe der Vergütungspflicht seine Anlage in Betrieb nehmen zu können, begründet keine „dringenden Gründe“ für einen vorzeitigen Bebauungsplan.\footnote{15\textsuperscript{15} vgl. auch LÖHR, in: BATTIS/KRAUTZBERGER/LÖHR, § 8 BauGB, Rn. 11}

Für Gemeinden, die noch keinen das gesamte Gemeindegebiet abdeckenden Flächennutzungsplan besitzen, kommt als Überbrückungsmaßnahmen ggf. auch die Aufstellung eines sachlichen Teilflächennutzungsplans nach § 5 Abs. 2b BauGB in Betracht. Diese Regelung wurde durch das EAG Bau 2004 eingeführt, um Gemeinden zur Standortsteuerung von Windkraftanlagen eine kurzfristige Reaktionsmöglichkeit zu schaffen.\footnote{16 zur Vertiefung: LÖHR, in BATTIS/KRAUTZBERGER/LÖHR, § 5 BauGB, Rn. 35f ff.}

Darstellungen im Flächennutzungsplan

Um dem Entwicklungsgebot des § 8 Abs. 2 Satz 1 BauGB zu genügen, muss der Flächennutzungsplan für die PV-Freiflächenanlage zumindest eine \textbf{Sonderbaufläche} (S) nach § 1 Abs. 1 BauNVO darstellen. Aus dem Abwägungsgebot folgt, dass auch auf Ebene des Flächennutzungsplans in der Regel eine nähere Konkretisierung für Sonderbauflächen erforderlich ist. Es ist deshalb zu empfehlen, die entsprechenden Flächen als „Sondergebiet Solaranlage“ oder in ähnlicher Weise darzustellen.

\textbf{5.4 Rückbauregelungen}


In Bebauungsplänen kann festgesetzt werden, dass die Nutzung eines Gebietes für eine PV-Freiflächenanlage nur für eine bestimmte Zeit oder bis zum Eintritt bestimmter Umstände zulässig ist (vgl. § 9 Abs. 2 BauGB). Derartige Befristungen benötigen eine besondere städtebauliche Begründung\footnote{17 LÖHR, in: BATTIS/KRAUTZBERGER/LÖHR, § 9 BauGB, Rn. 98g}, z. B. dass die Nutzung des bisherigen Freiraums zur Vermeidung einer dauerhaften Inanspruchnahme begrenzt bleiben soll. Auch soll in diesem Fall eine bestimmte Folgenutzung festgesetzt werden. Angesichts der langen Nutzungsdauer von PV-
Freiflächenanlagen von mehr als 20 Jahren wird die Festsetzung konkreter Folgenutzungen aber nur mit Schwierigkeiten möglich sein.

Aus befristeten Festsetzungen nach § 9 Abs. 2 BauGB folgt eine Rückbauverpflichtung nicht unmittelbar. Vielmehr bedarf es zur Durchsetzung einer gesonderten Anordnung nach § 179 Abs. 1 Ziff. 1 BauGB. In der Praxis erweist sich die hoheitliche Durchsetzung solcher Rückbaugebote jedoch aufgrund der grundsätzlich gegebenen Rechtsschutzmöglichkeiten manchmal als schwierig. Es ist deshalb zu empfehlen, Rückbauverpflichtung in begleitenden städtebaulichen Verträgen zu verankern.


Rückbauverpflichtungen können in der Praxis jedoch nur dann wirksam ohne finanzielle Belastung der öffentlichen Hand durchgesetzt werden, wenn der Grundstückseigentümer oder der Anlagenbetreiber zum Rückbau wirtschaftlich in der Lage sind. Es empfiehlt sich daher dringend, Rückbauverpflichtungen durch Bankbürgschaften oder in vergleichbarer Weise abzusichern.

Weitere Ausführungen zum Recycling der Module und zum Rückbau der Anlagen s. Kap. 9.

5.5 Berücksichtigung von Natur und Landschaft in Verfahren nach BauGB

Bauleitpläne (Flächennutzungsplan und Bebauungsplan) haben die Auswirkungen für die Umwelt zu berücksichtigen (vgl. § 1a Abs. 1 BauGB). Insoweit sind insbesondere die Bodenschutzklausel des § 1a Abs. 2 BauGB und die Eingriffsregelung nach dem Bundesnaturschutzgesetz gemäß § 1a Abs. 3 BauGB zu beachten.

5.5.1 Bodenschutzklausel

Die Errichtung von PV-Freiflächenanlagen im bisherigen Außenbereich (§ 11 Abs. 4 Ziff. 3 BauGB) führt zu einer zusätzlichen Inanspruchnahme von Flächen für bauliche Nutzungen. Auch wenn mit solchen Anlagen in der Regel keine hohe Versiegelung der Flächen verbun-

Aus § 11 Abs. 4 EEG folgt aber nach überwiegender Meinung keine Rangfolge derart, dass PV-Freiflächenanlagen nur im Ausnahmefall auf bisherigem Ackerland zugelassen werden können. Vielmehr stehen die in § 11 Abs. 4 EEG aufgezählten Fälle in einem echten Alternativenverhältnis zueinander.


5.5.2 Eingriffsregelung in der Bauleitplanung

Der auch mit einer PV-Freiflächenanlage verbundene Eingriff in Natur und Landschaft ist nach den Regeln des Bundesnaturschutzgesetzes zu ermitteln. Vermeidung, Minderung, Ausgleich und Ersatz sind dabei als Bestandteil der planerischen Abwägung zu berücksichtigen (vgl. § 1a Abs. 3 i. V. mit § 200a BauGB). Genauere Ausführungen hierzu s. in Kapitel 7.

Soweit das jeweilige Landesrecht dies ermöglicht, sind die Instrumente des Landschaftsplans und des Grünordnungsplans zur Unterstützung zu empfehlen (vgl. a. Kap. 5.1.3). Nach Maßgabe des Landesrechts kann dies obligatorisch oder in den Bauleitplan zu integrieren sein.

Auch wenn PV-Freiflächenanlagen der ökologisch günstigen Energiegewinnung sowie der Ressourcenschonung dienen, unterliegen sie in der Bauleitplanung den gleichen Anforderungen im Hinblick auf § 1a BauGB wie sonstige Planungen.

5.5.3 Bindende naturschutzrechtliche Vorgaben (Schutzgebiete, gesetzlich geschützte Biotope, Artenschutz)

Durch die Bauleitplanung können bindende Vorgaben des Naturschutzrechts nicht überwunden werden. Dies betrifft die jeweiligen Verbote in naturschutzrechtlichen Schutzgebieten (Naturschutzgebiete, Landschaftsschutzgebiete etc.) nach den jeweiligen Bestimmungen in den Schutzgebietsverordnungen. Sie sind daher einer planerischen Abwägung nicht über § 1a Abs. 3 BauGB zugänglich. Inwieweit eine PV-Freiflächenanlage in solchen Schutzgebieten ausnahmsweise zulässig sein kann, ergibt sich aus Verboten mit Genehmigungsvorbehalt in der jeweiligen Schutzgebietsverordnung.

Ob die Konflikte einer PV-Freiflächenanlage mit dem gesetzlichen Biotop- oder Artenschutz eine Befreiung zulassen oder nicht, ist Frage des Einzelfalls. Die Möglichkeit der Befreiung muss aber bereits im Rahmen der Bauleitplanung geklärt werden, da ansonsten ggf. ein unüberwindliches Hindernis für die Planverwirklichung besteht, welche ggf. zur Unwirksamkeit führt.

5.5.4 FFH-Gebiete und europäische Vogelschutzgebiete


Die FFH-Verträglichkeitsprüfung nach Art. 6 Abs. 3 FFH-Richtlinie (vgl. 34 Abs. 2 BNatSchG) hat zu klären, ob eine Beeinträchtigung des Gebietes als solches stattfindet. Hierbei ist auf sämtliche sich konkret abzeichnende Risiken einzugehen. Eine Verträglichkeit kann nur dann positiv festgestellt werden, wenn hierzu die besten wissenschaftlichen Erkenntnisse abgerufen, dokumentiert und berücksichtigt worden sind. Soweit Auswirkungen auf Fauna und Flora in den FFH-Gebieten möglich sind, ist die Verträglichkeit zu verneinen, wenn wissenschaftliche Erkenntnisse zu den Wirkungen fehlen.

Soweit im Rahmen der FFH-Verträglichkeitsprüfung festgestellt wird, dass die Erhaltungsziele des Gebietes als solches beeinträchtigt werden, wird eine PV-Freiflächenanlage in aller Regel nicht zulässig sein. Erst dann kommt die Abweichungsregel des Art. 6 Abs. 4 FFH-Richtlinie (vgl. § 34 Abs. 3 BNatSchG) zum Tragen. Das Vorhaben einer PV-Freiflächenanlage wird in aller Regel nicht die Ausnahme des § 6 Abs. 4 FFH-Richtlinie für sich in Anspruch nehmen können, weil es als solches wohl nicht aus zwingenden Gründen des öffentlichen Interesses einschließlich solcher sozialer oder wirtschaftlicher Art erforderlich ist und eine Alternativlösung ausscheidet.

Für europäische Vogelschutzgebiete gilt hinsichtlich der Verträglichkeitsprüfung sowie der Zulassung von Abweichungen das zur FFH-Verträglichkeit Gesagte entsprechend (vgl. §§ 32 ff. BNatSchG).

18 BVerwG, Urt. v. 17.01.2007 – 9 A 20.25 (bislang unveröffentlicht)
6 Umweltprüfung in der Bauleitplanung

6.1 Gesetzliche Grundlage

Sofern für die Zulassung einer PV-Freiflächenanlage ein neuer Bebauungsplan aufgestellt werden muss, ist im Rahmen des Bauleitplanverfahrens eine Umweltprüfung durchzuführen und ein Umweltbericht zu erstellen. Dies gilt auch für die Aufstellung eines vorhabenbezogenen Bebauungsplans. Eine Ausnahme gilt für Bebauungspläne im vereinfachten Verfahren nach § 13 BauGB sowie für „Bebauungspläne der Innenentwicklung“ nach § 13a BauGB. Die Kategorie der „Bebauungspläne der Innenentwicklung“, deren räumlicher Anwendungsbereich weit gefasst ist (§13a Abs. 1 Satz 1), wurde mit dem „Gesetz zur Erleichterung von Planungsvorhaben für die Innenentwicklung der Städte“ vom 01.01.07 neu eingeführt. Bis zu einer festgesetzten Grundfläche von 20.000 qm besteht bei derartigen Bebauungsplänen eine pauschale Freistellung von der Umweltprüfung, bei einer Grundfläche von 20.000 - 70.000 qm ist die Durchführung einer Umweltprüfung von den Ergebnissen einer einzelfallbezogenen Vorprüfung abhängig (§13a Abs. 1 Satz 2 Nr.2).

6.2 Aufgabe und Inhalt der Umweltprüfung


Abb. 6-1: Die Umweltprüfung in der Bauleitplanung (nach KOCH, M. 2005, verändert)\(^{19}\)

Der Umweltbericht, der die Ergebnisse der Umweltprüfung beschreibt und bewertet, ist selbständiger Teil der Begründung zum Bauleitplanentwurf und damit das zentrale Dokument für die Aufbereitung des umweltbezogenen Abwägungsmaterials. Welche Angaben dieser Umweltbericht enthalten muss, ist in einer gesetzlichen Anlage geregelt (vgl. Anlage zu § 2 (4) und § 2a BauGB). Danach besteht der Umweltbericht aus einleitenden Angaben, der Beschreibung und Bewertung der ermittelten Umweltauswirkungen sowie zusätzlichen Angaben (s. Tab. 6-1). Wesentliches Anliegen der Umweltprüfung ist die Darstellung von Alternativen einschließlich ihrer Umweltauswirkungen und eine Begründung der getroffenen Aus-

wahl. Dabei ist auch die „Null-Variante“ zu berücksichtigen, die im Sinne einer Status quo-Prognose die Entwicklung der Umwelt ohne die Planung aufzeigen soll.

**Abb. 6-2: Die praktische Abwicklung der Umweltprüfung**

(nach: KUSCHNERUS 2004)²⁰

Die Umweltprüfung bündelt die unterschiedlichen umweltbezogenen Prüfaufgaben der Bau- leitplanung. In einem Bauleitplanverfahren, das die Zulassung einer PV-Freiflächenanlage vorbereitet, sind in der UP regelmäßig die Eingriffsregelung, artenschutzrechtliche Regelungen, die FFH-Verträglichkeitsstudie (sofern erforderlich) sowie die Anforderungen der erwei-

---


Tab. 6-1: Notwendige Inhalte des Umweltberichtes

<table>
<thead>
<tr>
<th>Notwendige Inhalte des Umweltberichtes</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Einleitung</strong></td>
</tr>
<tr>
<td>• Kurzdarstellung des Inhaltes und der wichtigsten Ziele des Bauleitplanes einschl. Beschreibung der Festsetzungen des Plans mit Angaben über Standorte, Art und Umfang sowie Bedarf an Grund und Boden des geplanten Vorhaben</td>
</tr>
<tr>
<td>• Darstellung der in einschlägigen Fachgesetzen und Fachplänen festgestellten Ziele des Umweltschutzes, die für den Bauleitplan von Bedeutung sind, und der Art wie diese Ziele und die Umweltbelange bei der Aufstellung berücksichtigt wurden</td>
</tr>
<tr>
<td><strong>Hauptteil</strong></td>
</tr>
<tr>
<td>• Bestandsaufnahme des derzeitigen Umweltzustands, einschließlich der Umweltmerkmale der Gebiete, die voraussichtlich erheblich beeinflusst werden</td>
</tr>
<tr>
<td>• Prognose über die Entwicklung des Umweltzustandes bei Durchführung und Nichtdurchführung der Planung (sog. Nullvariante)</td>
</tr>
<tr>
<td>• Geplante Maßnahmen zur Vermeidung, Verringerung und zum Ausgleich der nachteiligen Auswirkungen</td>
</tr>
<tr>
<td>• Darlegung der in Betracht kommenden anderweitigen Planungsmöglichkeiten, wobei die Ziele und der räumlichen Geltungsbereich des Bauleitplans zu berücksichtigen sind („plankonforme Alternativen“)</td>
</tr>
<tr>
<td><strong>zusätzliche Angaben</strong></td>
</tr>
<tr>
<td>• Beschreibung der wichtigsten Merkmale der verwendeten technischen Verfahren bei der Umweltprüfung sowie Hinweise auf Schwierigkeiten, die bei der Zusammenstellung der Angaben aufgetreten sind, zum Beispiel technische Lücken oder fehlende Kenntnisse</td>
</tr>
<tr>
<td>• Beschreibung der geplanten Maßnahmen zur Überwachung der erheblichen Auswirkungen der Durchführung des Bauleitplanes auf die Umwelt (Monitoring)</td>
</tr>
<tr>
<td>• Allgemein verständliche Zusammenfassung der erforderlichen Angaben</td>
</tr>
</tbody>
</table>

Durch eine Abschichtungsregelung (§ 2 Abs. 4 (5) BauGB) werden unnötige Doppelprüfungen vermieden. Im Fall einer bereits in anderen Planverfahren durchgeführten Umweltprüfung kann sich die UP in dem zeitlich nachfolgenden oder gleichzeitig durchgeführten Planverfahren auf zusätzliche oder andere Umweltauswirkungen beschränken. So kann beispielsweise die integrierte Umweltprüfung auf der Ebene der Flächennutzungsplanung zur „Abschichtung“ auf der Ebene der Bebauungsplanung genutzt werden.
Gliederung des Umweltberichtes

Hinweise auf den erforderlichen Inhalt des Umweltberichtes liefert die Anlage zu § 2 Abs. 4 und § 2a BauGB (s. Tab. 6-1). Sie sollte im Wesentlichen als Grundlage für den Aufbau des Umweltberichtes herangezogen werden. In Anhang 3 (Abb. 11-1) wird beispielhaft die Gliederung eines Bebauungsplanes mit integriertem Grünordnungsplan und Umweltbericht aufgezeigt, die auf diesen Vorgaben aufbaut.

- Der Umweltbericht wird eingeleitet durch die Beschreibung des geplanten PV-Freiflächenvorhabens und der geplanten Festsetzungen des Bebauungsplans. Daraufhin ist auch, wie die bestehenden gesetzlichen oder durch Fachpläne (z. B. Landschaftspläne) festgelegten Ziele des Umweltschutzes im Bauleitplan Berücksichtigung finden.

- Der Hauptteil enthält eine Darstellung der Wirkfaktoren des geplanten Vorhabens sowie eine Beschreibung und Bewertung der Umweltauswirkungen durch den Bau, die Anlage und den Betrieb der geplanten PV-Freiflächenanlage, deren planungsrechtliche Zulässigkeit durch den Bauleitplan vorbereitet wird. Die im BauGB aufgelisteten Schutzgüter und sonstigen Aspekte sind dabei nur soferne zu behandeln, als sie zu erheblichen Auswirkungen der Umwelt führen.

- Im Rahmen einer Prognose der Entwicklung des Umweltzustandes werden nachfolgend die zu erwartenden Umweltauswirkungen der geplanten Flächennutzung zusammenfassend der Entwicklung des Umweltzustandes bei Nichtdurchführung des Projektes gegenübergestellt (s. Fallbeispiel Tab. 6-2). Dabei kann u. U. deutlich gemacht werden, dass mit der Realisierung einer PV-Freiflächenanlage auch positive Effekte für einzelne Schutzgüter und Bestandteile der Umwelt einhergehen.

- Im Weiteren sind die Möglichkeiten der Vermeidung, Verringerung und des Ausgleichs darzustellen und entsprechende Maßnahmen aufzuführen.

- Im Rahmen der Umweltprüfung besteht die Verpflichtung zur Nachkontrolle (Monitoring) der Umweltauswirkungen. Dazu sind im Umweltbericht Regelungen zu treffen, wie die erheblichen Auswirkungen auf die Umwelt zu überwachen sind. Welche Überwachungsmaßnahmen festgelegt und im Umweltbericht aufgeführt werden, muss sich daran orientieren, welche Annahmen, Prognosen und Bewertungen hinsichtlich der erheblichen Umweltauswirkungen Gegenstand der Umweltprüfung und der Abwägungsentscheidung waren und inwieweit eine spätere Überprüfung im Hinblick auf die zukünftige tatsächliche Entwicklung angezeigt ist.

- Weiterhin sind alternative Planungsmöglichkeiten darzustellen. Sofern die Frage der Standortalternativen bereits im Flächennutzungsplan geprüft und entschieden ist, kann sich der Bebauungsplan in der Regel auf in Betracht kommende Varianten zur Innenausgestaltung und kleinräumigen Verschiebung des Plankonzeptes konzentrieren.
- In der allgemein verständlichen Zusammenfassung werden abschließend die wesentlichen Inhalte des Umweltberichtes dokumentiert.

Tab. 6-2: Fallbeispiel 21 – Prognose über die Entwicklung des Umweltzustandes bei Durchführung und Nichtdurchführung eines PV-Freiflächenvorhabens (GEMEINDE ESTENFELD 2004)

<table>
<thead>
<tr>
<th>Beurteilung der zu erwartenden Umweltauswirkungen ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>bei Durchführung der Planung</td>
</tr>
<tr>
<td>Verringerung der Schadstoffeinträge infolge der Aufgabe der landwirtschaftlichen Nutzung und extensiver Bewirtschaftung</td>
</tr>
<tr>
<td>nur minimale Flächenversiegelung mit geringen Auswirkungen auf Boden- und Wasserhaushalt</td>
</tr>
<tr>
<td>Verbesserung des Retentionsvermögens, verzögerter Abfluss von Niederschlagswasser aufgrund der ganzjährig geschlossenen Vegetationsdecke, Erosionsschutz</td>
</tr>
<tr>
<td>Veränderung und kleinräumige Differenzierung der Standortverhältnisse durch Überbauung / Beschattung</td>
</tr>
<tr>
<td>positive Effekte für Fauna und Flora, Aufwertung insbesondere des Vegetationsbestandes; Entwicklung wertvoller Lebensraumtypen magerer trockener Wiesen, Erhöhung der biologischen Vielfalt</td>
</tr>
<tr>
<td>Strukturreichung im Umfeld, Aufwertung der Biotopqualität</td>
</tr>
<tr>
<td>Veränderung des Landschaftsbildes durch technisch geprägte Nutzung auf bisher landwirtschaftlichen Nutzflächen (Kulturlandschaft) im unmittelbaren Umfeld des Sondergebietes</td>
</tr>
<tr>
<td>Minderung des Erholungspotenzials in der Landschaft, insbesondere in den siedlungsnahen Bereichen durch die optische Störung</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

21 Ausweisung eines Sondergebietes für die Solarenergienutzung auf einer Fläche von insg. 1.72 ha, Vornutzung: Acker, Bauweise: fest installierte Modulreihen, Aufständerung auf gerammten Modulstützen
6.3 Integration von Eingriffsregelung, FFH-Verträglichkeitsprüfung und speziellem Artenschutz in die Umweltprüfung und den Umweltbericht


Eingriffsregelung

Die Eingriffsregelung ist eine materiell-rechtliche Vorgabe, während die Vorschriften zur Umweltprüfung rein verfahrenstechnische Regelungen darstellen.


Soweit es im Rahmen der Abwägung mit anderen Belangen nicht zu einer Vollkompensation des Eingriffs kommt, sollte dies jedoch nicht im Umweltbericht, sondern in einem späteren Kapitel der Planbegründung erörtert werden, in dem die Entscheidung über die Abwägung zwischen den verschiedenen Belangen offengelegt und begründet wird.

FFH-Verträglichkeitsprüfung

Den Bestimmungen des BauGB zufolge müssen im Rahmen der Umweltprüfung – sofern eine Betroffenheit besteht – auch die erheblichen Auswirkungen auf die Erhaltungsziele und die Schutzzwecke von FFH-Gebieten und europäischen Vogelschutzgebieten berücksichtigt werden. Während die Umweltprüfung eine Umweltfolgenabschätzung ist, die in der Abwägung zu berücksichtigen ist, entscheidet eine FFH-Verträglichkeitsprüfung demzufolge über die Verträglichkeit oder Unverträglichkeit eines Vorhabens. Im Falle erheblicher Beeinträchtigungen dieser Gebiete sind die Vorschriften des Bundesnaturschutzgesetzes über die Zulässigkeit der Durchführung derartiger Eingriffe anzuwenden (vgl. Kap. 5.5.4).

22 Hinweise zu den inhaltlichen Anforderungen der Eingriffsregelung sind Kap. 7 zu entnehmen.
Wegen dieser speziellen durch das Europarecht vorgegebenen Erfordernisse ist eine vollständige verfahrensmäßige Integration einer FFH-Verträglichkeitsprüfung in die Umweltprüfung nicht möglich.

Sofern die Auswirkungen eines PV-Freiflächenvorhaben die Erhaltungsziele oder den Schutzzweck eines FFH-Gebietes erheblich beeinträchtigen, ist ein Ausnahmeverfahren gem. § 34 (3) BNatSchG vermutlich nicht möglich, da die im Gesetz genannten Kriterien, insbesondere die „zingenden Gründe des überwiegenden öffentlichen Interesses“, für PV-Vorhaben nur eingeschränkt in Anspruch genommen werden können und in der Regel zutäuschbare Standortalternativen vorhanden sein dürften. Sofern – wie zu vermuten ist – die entsprechenden Ausnahmevoraussetzungen nicht vorliegen, ist ein PV-Vorhaben nicht realisierbar und das eingeleitete Bauleitplanverfahren demzufolge einzustellen.


**Artenschutzrechtliche Regelungen**

Auch wenn der Bebauungsplan als Satzung die unmittelbare Durchführung von Bauvorhaben, deren Durchführung artenschutzrechtliche Vorschriften ggf. entgegen stehen (nach § 42 i. V. m. § 10 Abs. 2 und § 62 BNatSchG) nicht zulässt, so bereitet er die Zulassung entscheidend vor. Demzufolge muss der Bebauungsplan für ein PV-Vorhaben eine Situation herstellen, die eine Befreiung von den artenschutzrechtlichen Vorschriften (durch die Naturschutzbehörde) mit der Baugenehmigung ermöglicht, ggf. mit erforderlichen Auflagen.

Wegen der speziellen Rechtsfolgen ist im Regelfall ein eigenständiger Fachbeitrag – die artenschutzrechtliche Ausnahmeprüfung – erforderlich, bei dem ein naturschutzrechtlich fest umrisses Artenspektrum einem gesonderten Prüfprogramm unterzogen wird. Zu berücksichtigen sind dabei:

- die Arten des Anhang IV der FFH-Richtlinie,
- die europäischen Vogelarten und
- die darüber hinaus nach nationalem Recht besonders geschützten bzw. streng geschützten Arten.


27.11.2007

7 Arbeitsschritte zur Eingriffsregelung in der Bauleitplanung

Die Planung und der Bau einer PV-Freiflächenanlage wird regelmäßig einen Eingriff in Natur und Landschaft im Sinne des § 18 Abs. 1 Bundesnaturschutzgesetz (BNatSchG) darstellen. Damit verbunden sind bestimmte Vermeidungs- und Ausgleichspflichten.

Unter die Eingriffsregelung fallende PV-Freiflächenanlagen

Vorhaben im Außenbereich i. S. von § 35 des Baugesetzbuches (BauGB) sowie Bebauungspläne, die eine Planfeststellung ersetzen, unterliegen der Eingriffsregelung (§ 21 BNatSchG).

Nicht unter die Eingriffsregelung fallende PV-Freiflächenanlagen

Auf Vorhaben, in Gebieten mit Bebauungsplänen nach § 30 BauGB, während der Planaufstellung nach § 33 BauGB und auf Vorhaben im Innenbereich nach § 34 BauGB ist die Eingriffsregelung nicht anzuwenden.

Besonderheiten der Eingriffsregelung in der Bauleitplanung

Bei Eingriffen, die durch die Bauleitplanung vorbereitet werden, gelten die gesonderten Regelungen des BauGB (GERHARDS 2002, JESSEL & TOBIAS 2002). Wie bei der Eingriffsregelung im Naturschutzrecht ist auch hier ein Prüfverfahren einzuhalten, der jedoch einige Unterschiede aufweist. So kennt das Bauwesen die Maßnahmen zur Kompensation der Eingriffssfolgen nur den Begriff des „Ausgleichs“. Er schließt sowohl Ausgleichs- als auch Ersatzmaßnahmen im naturschutzrechtlichen Sinn ein (vgl. § 200a Satz 1 BauGB). Ebenso entfällt die in § 18 BNatSchG angelegte Stufenfolge von Eingriffsregelung und naturschutzrechtlicher Abwägung. Vielmehr wird die Eingriffsregelung umfassend unter die Anwendung des § 1 Abs. 7 BauGB gestellt und umfasst somit die wesentlichen Aspekte des in § 1 Abs. 7 Nr. 1a genannten Belangs.

Darüber hinaus ist der Ausgleich der Folgen der bauleitplanerisch vorbereiteten Eingriffe nicht striktes Recht, sondern der Abwägung zugänglich (§ 1a Abs. 2 (2) BauGB).


Vermeidung und Ausgleich in der Bauleitplanung fallen unter die Abwägung. Das kann für den Fall, dass ihrer Umsetzung gravierende Zwänge entgegenstehen, Abstriche von ihrem

23 BATTIS/KRAUTZBERGER/LÖHR, § 1a BauGB, Rn. 17
Um die Abwägung nachvollziehbar zu gestalten, ist aber auch in der Bauleitplanung zunächst der volle Kompensationsbedarf zu ermitteln und in die Abwägung einzustellen. Da jedoch der Ausgleich in der Bauleitplanung räumlich flexibel gehandhabt werden kann, ist es für den konkreten Fall äußerst schwierig, solche Zwänge, die eine reduzierte Vermeidung bzw. reduzierten Ausgleich auch tatsächlich rechtfertigen, plausibel zu begründen.

Die Anwendung der Eingriffsregelung erfolgt in einer Abfolge einzelner sachlich abgegrenzter Arbeitsschritte, die aufeinander aufbauen (s. Abb. 7-1), aber auch in Fachveröffentlichungen und Arbeitshilfen der Länder bereits ausführlich dargelegt wurden (s. u. a. BfN 2002: Naturschutzfachliche Handlungsempfehlungen zur Eingriffsregelung in der Bauleitplanung).

Nachfolgend wird daher nur zusammenfassend auf die wesentlichen Aspekte der Eingriffsregelung eingegangen und vorhabensbezogene Hinweise geben.
ARGE Monitoring PV-Anlagen
Leitfaden zur Berücksichtigung von Umweltbelangen bei der Planung von PV-Freiflächenanlagen

Entwickeln einer Zielkonzeption
Ziel:
Ableitung von räumlich und funktional geeigneten Ausgleichs- und Ersatzmaßnahmen
• Entwicklung einer Zielkonzeption
• Räumlich-funktionale Auswahl von geeigneten Flächen für Ausgleichs- und Ersatzmaßnahmen
• Ermittlung des Ausgangswertes der Maßnahmenfläche
• Planung der Ausgleichs- und Ersatzmaßnahmen auf Grundlage der Zielkonzeption

Erfassen und Bewerten von Natur und Landschaft
Ziel:
Bewertung der Bedeutung der funktionsausprägung von Naturhaushalt und Landschaftsbild
Ermitteln und Bewerten des Eingriffs
Ziel:
Bestimmung der Erheblichkeit der beeinträchtigten funktionsausprägungen von Naturhaushalt und Landschaftsbild

Bestimmen des Kompensationsbedarfs
• wiederherzustellende Funktion (Art)
• Wertverlust / Wertminderung der erheblich beeinträchtigten funktionsausprägungen (Wertstufenänderung, Fläche)

Vergleichende Gegenüberstellung
• der beeinträchtigten und wiederherzustellenden funktionsausprägungen
• des Wertverlustes / der Wertminderung und der Wertsteigerung (Wertstufenänderung, Fläche)

Abb. 7-1: Vorgehensweise bei der Eingriffsregelung

Seite 73
27.11.2007
7.1 Festlegen des Untersuchungsrahmens

Vorabstimmung


Eine frühzeitige Abstimmung, die selbst bei kleineren Vorhaben empfohlen wird, bringt in der Regel Vorteile für alle Seiten (Planungssicherheit, Beschränkung auf das Notwendige, Strafzahlung der Planungsabläufe etc.) und erhöht die Akzeptanz des geplanten Vorhabens. Hier kann im Übrigen auf die gesetzlichen Regelungen der §§ 71a bis 71e VwVfG bzw. die parallelalen Vorschriften der Landes-Verwaltungsverfahrensgesetze verwiesen werden.

Ermitteln der Projektmerkmale / Projektwirkungen

Zur Bestimmung des Untersuchungsrahmens werden die zu erwartenden Projektwirkungen (Flächenbeanspruchung/Versiegelung, Überbauung etc.) auf der Basis eines ersten technischen Entwurfes des PV-Vorhabens (vorhabensbezogener Bebauungsplan) oder eines ersten Bebauungsplan-Entwurfes ermittelt und deren Reichweiten prognostiziert. Anhaltspunkte für mögliche Projektwirkungen einer PV-Freiflächenanlage bietet Tab. 3-2 (s. S. 22). Je nach Bauweise, Höhe und Flächenbedarf können die von einem PV-Freiflächenvorhaben ausgehenden Wirkungen deutlich voneinander abweichen. Darauf aufbauend wird eine erste überschlägige Wirkungsprognose erstellt.

Abgrenzen des Untersuchungsraumes und Ableiten des Untersuchungsaufwandes

Der Untersuchungsraum der Eingriffsregelung ist grundsätzlich vom Planungsraum (= Geltungsbereich) der Bauleitplanung zu unterscheiden.

Bei der Abgrenzung des Untersuchungsraumes sind alle voraussichtlich betroffenen Schutzgüter und Funktionen zu berücksichtigen. Der Gesamtuntersuchungsraum setzt sich zusammen aus dem Vorhabenort (alle direkt beanspruchten Flächen) und dem Wirkaum (alle Flächen, die indirekt von bau-, betriebs- oder anlagebedingten Wirkungen des Vorhabens betroffen sein können). Der insgesamt in die Untersuchungen einzubeziehende Raum ergibt sich aus der Intensität und dem spezifischen Ausbreitungsmuster der Wirkungen, die von dem PV-Vorhaben voraussichtlich ausgehen können und den landschaftlichen Gegebenheiten (z. B. der Empfindlichkeit der betroffenen Schutzgüter und Funktionen).

Für die verschiedenen Schutzgüter und Beeinträchtigungen können sich unterschiedliche Abgrenzungen ergeben. Die Ermittlung und Bewertung der Bodenfunktionen kann bei PV-
Freiflächenanlagen in der Regel auf den Ort des Vorhabens (einschl. der Nebenanlagen und Erschließungseinrichtungen) beschränkt bleiben, da keine darüber hinausgehenden Beeinträchtigungen zu erwarten sind. Dies gilt auch für die Ermittlung der Grundwasserverhältnisse (Grundwasserflurabstand) und dessen Bewertung (Verschmutzungsempfindlichkeit). Oberflächengewässer sollten im Rahmen der Biotopkartierung in einem größeren Umkreis erfasst werden.


Für eine erste Einschätzung der Situation vor Ort bieten sich Landschaftsrahmenpläne (LRP) oder Landschaftspläne (LP) an, die bei der Naturschutzbehörde oder der Gemeinde eingesehen werden können. Immer häufiger stehen diese Planwerke auch bereits digital im Internet zur Verfügung.

Erste Hinweise kann man mit Hilfe der folgenden Tab. 7-1 erlangen. Detailliertere Hilfestellung geben die Tabellen Tab. 11-2 und Tab. 11-3 im Anhang 4.

**Tab. 7-1: Hinweise zu faunistischen Untersuchungen bei PV-Freiflächenanlagen auf Ackerstandorten oder Konversionsflächen**

(GfN 2006)

<table>
<thead>
<tr>
<th>Schutzgut/Art</th>
<th>Fragestellung</th>
<th>Methode</th>
<th>Beschränkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schutzgut/ Art</td>
<td>Fragestellung</td>
<td>Methode</td>
<td>Beschränkung</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>Säugetiere</td>
<td>Sind (potenzielle) Lebensräume von Feldhamstern oder weiteren seltenen Säu gern betroffen?</td>
<td>Recherche und Auswertung vorliegender Daten (z. B. LRP, LP, Naturschutzbehörde, fachkundige Ortskenner), ggf. Erfassung der Vorkommen der Arten (z. B. Kartierung der Hamsterbaue)</td>
<td>nur in Gebieten mit Hamstervorkommen</td>
</tr>
<tr>
<td></td>
<td>Werden traditionelle Wildwechsel oder Wanderkorridore von Arten mit großem Raumbedarf (z. B. Luchs) zerschnitten?</td>
<td>z. B. Befragung der Jagdausübungsberechtigten, Spurensuche, Potenzialanalyse anhand von Karten</td>
<td>nur bei großräumiger Einzäunung</td>
</tr>
<tr>
<td></td>
<td>Werden Lebensräume schutzwürdiger Vorkommen wärmeliebender Tierarten (z. B. Trockenrasenarten, seltene Artengemeinschaften von Extensiväckern) betroffen?</td>
<td>Biotoptypenerfassung und Strukturbildung, Erfassung ausgewählter Indikatorarten mittels Standardmethoden, ggf. Raumanalyse (z. B. Flächenbilanzierungen etc.)</td>
<td>nur auf (halb)offenen Trockenbiotopen bzw. entsprechenden extensiven Ackerstandorten</td>
</tr>
<tr>
<td>Pflanzen</td>
<td>Sind Pflanzengesellschaften trocken-warmer Standorte (z. B. Trockenrasen) oder gefährdete Ackerwildkrautfluren durch das Vorhaben betroffen?</td>
<td>Recherche und Auswertung vorliegender Daten (z. B. LRP, LP, Naturschutzbehörde, fachkundige Ortskenner), ggf. Erfassung von Flora und Pflanzengesellschaften im Plangebiet oder auf repräsentativen Probeplänen</td>
<td>nur in Regionen mit entsprechenden Verdachtsflächen auf diese Arten oder Lebensräume</td>
</tr>
<tr>
<td></td>
<td>Sind ggf. ausreichend geeignete Flächen außerhalb des durch Module beschatteten Bereichs vorhanden oder herstellbar?</td>
<td>Raumanalyse (z. B. mittels Luftbild, Flächenbilanzierung)</td>
<td></td>
</tr>
<tr>
<td>Sonderbiotope/ Kleinstrukturen</td>
<td>Sind aus fachlicher Sicht wertvolle Sonderbiotope (z. B. Hohlwege, Sölle) oder andere Kleinstrukturen (z. B. Böschungen) vorhanden?</td>
<td>Auswertung vorliegender Daten (z. B. LP), ggf. Kleinstrukturbildung</td>
<td>nur in Gebieten mit entsprechenden Verdachtsflächen auf diese Sonderbiotope</td>
</tr>
</tbody>
</table>

Sind im Vorhabensgebiet keine geeigneten Kompensationsmaßnahmen umsetzbar, muss der Untersuchungsraum entsprechend erweitert werden.

### 7.2 Erfassen und Bewerten von Naturhaushalt und Landschaftsbild


Die Erfassung des Schutzgutes Tiere und Pflanzen ist grundsätzlich anhand einer Biotopentypenkartierung durchzuführen. Darüber hinausgehende Untersuchungen (Erfassung von für den Untersuchungsraum bedeutsamer Repräsentanten an Tier- und Pflanzengruppen) sind einzelfallbezogen festzulegen, s. a. 7.1 und Anhang 4.

Bei Planungen in Bereichen mit wahrscheinlich hohem Konfliktpotenzial (s. Tab. 4-3, S. 48; z. B. Bereiche mit Biotopen der streng geschützten Arten nach § 19 (3) BNatSchG) ist in der Regel von einem erweiterten Erfassungsaufwand auszugehen.


Anhand allgemein anerkannter Bewertungskriterien wird eine differenzierte Bewertung der Schutzgüter und ihrer Funktionen vorgenommen. Dabei sollten insbesondere folgende Hinweise beachtet werden:

- Die anzuwendende Bewertungsmethode sollte sich an den jeweiligen Leitfäden der Bundesländer bzw. an wissenschaftlicher und naturschutzfachlicher Standardliteratur orientieren.
- Die Bewertung sollte schutzgut- und funktionsbezogen vorgenommen werden, wobei die Bewertungskriterien und der Bewertungsrahmen nachvollziehbar darzulegen und zu begründen sind.
- Die Bewertungsmaßstäbe sollten aus den Zielen und Grundsätzen des Naturschutzes (§§ 1, 2 BNatSchG), den räumlichen konkretisierten Zielen und Bewertungen der Landschaftsplanung und aus anderen naturschutzfachlichen Planungsbeiträgen oder Schutzwürdigkeitsgutachten abgeleitet werden.
7.3 Prognostizieren der Beeinträchtigungen / Konfliktanalyse


Als Arbeitsmethode zur Prognose von Landschaftsbildbeeinträchtigungen sind visuelle Gegenüberstellungen der Vor- und Nacheingriffszustände zu empfehlen (Fotomontagen, Videosimulation, maßstäbliche Skizzen u. Ä.), die zur Unterstützung und als Beleg für eine verbale Beschreibung der Beeinträchtigungen eingesetzt werden können. Dies ist zwar nicht verpflichtend, schafft aber insbesondere im Rahmen der Aufstellung erforderlicher Bauleitpläne eine verbesserte Grundlage für die Willensbildung in den Gemeinderäten.

7.4 Entwickeln von Vorkehrungen zur Vermeidung und Minderung von Beeinträchtigungen

Verursacher von Eingriffen sind zur Vermeidung von Beeinträchtigungen verpflichtet (§ 19 Abs. 1 BNatSchG). Geschuldet ist primär die vollständige Vermeidung, sekundär die teilweise Vermeidung oder Schadensminderung.

Die Eingriffsregelung dagegen ist ein Folgenbewältigungssystem, das die generelle Zulässigkeit des Vorhabens insgesamt nicht mehr in Frage stellt. Die Verpflichtungen des Vermeidungsgebotes nach § 19 Abs. 1 BNatSchG beziehen sich daher nicht auf die Vermeidung des Vorhabens insgesamt, sondern nur auf die Vermeidung einzelner Beeinträchtigungen.

Vermieden werden können Beeinträchtigungen im Rahmen der Bauleitplanung grundsätzlich durch:
• Unterlassung des gesamten Vorhabens bzw. Wahl grundsätzlich anderer, ebenfalls Ziel führender, aber umweltverträglicherer Lösungen,
• Wahl eines naturschutzfachlich geeigneten Standortes, d. h. Errichtung der PV-Freiflächenanlage auf einer Fläche mit voraussichtlich geringem Konfliktpotenzial (z. B. vorbelastete oder anthropogen veränderte Flächen, s. Tab. 4-2),
• Veränderung des Vorhabens durch Verkleinerung oder Verschiebung (z. B. Aussparung bzw. Abstandshaltung zu naturnahen Biotopen) sowie technische Änderungen am Vorhaben selbst (z. B. Verringerung der Modulhöhen zur Minderung visueller Beeinträchtigungen),
• unmittelbare technische oder landschaftspflegerische Ergänzungen des Vorhabens am Vorhabensort (z. B. Bau von Kleintierdurchlässen zur Minderung von Zerschneidungseffekten, Sichtschutzpflanzungen, zeitliche Steuerung des Bauablaufs).

Bezogen auf die letztgenannten unmittelbaren Ergänzungen von Vorhaben ist die Entscheidung, ob es sich um Maßnahmen zur Vermeidung oder zum Ausgleich erheblicher Beeinträchtigungen handelt, nur im Einzelfall zu treffen.

Eine „Checkliste“ möglicher Vermeidungsmaßnahmen, die beim Bau einer PV-Freiflächenanlage zur Anwendung kommen können, zeigt die nachfolgende Tabelle.
Tab. 7-2: Hinweise zu möglichen Vermeidungs- / Minimierungsmaßnahmen auf der Ebene der Bebauungsplanung

<table>
<thead>
<tr>
<th>Schutzgut</th>
<th>mögliche Vermeidungs- / Minimierungsmaßnahmen auf der Ebene der Bebauungsplanung</th>
</tr>
</thead>
</table>
| **Pflanzen / Tiere / biologische Vielfalt** | • Grundsätzliche Wahl einer möglichst Flächen sparenden Aufstellung, aber:  
  • Aussparung bzw. Abstandhaltung zu naturnahen Biotopen und Landschaftsbestandteilen wie feuchten Senken, Kleingewässern etc.  
  • Freihaltung besonders hochwertiger Bereiche (z. B. Trockenrasenfluren guter Ausprägung auf Konversionsflächen) von Totalverschattung  
  • Auflagen zur Beschränkung von Auswirkungen des Baubetriebes (z. B. Sicherung von Biotopen oder Standorten vor Befahren bzw. Beschädigungen durch Absperrungen)  
  • Durchführung beeinträchtigender Maßnahmen (z. B. Rodungen) außerhalb von Vegetations-, Brut oder Gastvogelperiode  
  • Verzicht auf den Einbau von Fremdsubstraten (z. B. für Baustraßen, Bodenabdeckungen); sofern erforderlich: unbelastete, nährstoffarme, standortgerechte Substrate verwenden  
  • Abstand der Module vom Boden > 0,80 m zur Gewährleistung einer dauerhaft geschlossenen Vegetationsdecke  
  • Verzicht auf eine großflächige Beleuchtung der Anlage zum Schutz von Tieren vor Lockwirkung der Lichtquellen, sofern erforderlich Einsatz von Kaltstrahlern  
  • Bei sehr großen Gebieten ggf. Freihaltung von nicht eingezäunten Korridoren |
| **Boden**         | • Weitest möglicher Verzicht auf Bodenversiegelung; Minimierung der Fundamentflächen z. B. durch Verwendung von Erddübeln  
  • Planung kurzer Erschließungs- und Anfahrtswege (Reparatur und Wartung); schwere Befestigungen sollten ausgeschlossen werden  
  • Beschränkung der Auswirkungen des Baubetriebes (z. B. durch Begrenzung des Baufeldes, Flächen schonende Anlage von Baustraßen, Verwendung von Baufahrzeugen mit geringem Bodendruck, Vermeidung von Bauarbeiten bei anhaltender Bodennässe), Rückbau der Baustraßen und Auflockerung des Bodens  
  • Vermeidung größerer Erdmassenbewegungen sowie von Veränderungen der Oberflächenformen  
  • Sorgfältige Entsorgung der Baustelle von Restbaustoffen, Betriebsstoffen etc. |
<table>
<thead>
<tr>
<th>Schutzgut</th>
<th>mögliche Vermeidungs- / Minimierungsmaßnahmen auf der Ebene der Bebauungsplanung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasser</td>
<td>• Schutz von Oberflächengewässern durch Standortverschiebungen</td>
</tr>
<tr>
<td></td>
<td>• Vermeidung von Gewässerverfüllung und -verrohrung</td>
</tr>
<tr>
<td></td>
<td>• Weitest möglicher Verzicht auf Bodenversiegelung; Minimierung der Fundamentflächen z. B. durch Verwendung von Erddübeln</td>
</tr>
<tr>
<td></td>
<td>• ggf. Anlage von Versickerungsvorrichtungen (bei großen Modultischen und geringer Versickerungsleistung des Bodens oder Anlagen in Hanglage)</td>
</tr>
<tr>
<td>Klima/Luft</td>
<td>• Erhalt von Luftaustauschbahnen</td>
</tr>
<tr>
<td>Landschaft / Landschaftsbild</td>
<td>• Verwendung visuell unauffälliger Zäune (z. B. grüne Farbe) oder Sichtverschattung durch Abpflanzung</td>
</tr>
<tr>
<td></td>
<td>• Herstellung des energetischen Verbundes mit dem Leitungsnetz der Energieversorgungsunternehmen mittels Erdverkabelung; neue Freileitungen sollten vermieden werden</td>
</tr>
<tr>
<td></td>
<td>• Vermeidung von ungebrochenen und leuchtenden Farben (Farbgebung der Anlage sollte sich in das Landschaftsbild einfügen), Reduzierung von Reflexionsmöglichkeiten</td>
</tr>
</tbody>
</table>

Soweit durch alternative Anlagentechniken (Dickenschicht- statt Dünnschichtzellen, Reihenaufstellung statt Moveranlagen) der Flächenbedarf und Landschaftseingriff vermindert werden könnte, schafft dies aber keinen gesetzlichen Vorrang der einen Technik vor der anderen. Die Wahl der konkreten Anlagentechnik ist von vielen (v. a. auch wirtschaftlichen) Faktoren abhängig. Es ist nicht Aufgabe des naturschutzrechtlichen Vermeidungsgebotes, in eine Technikentwicklung einzugreifen, so lange eine bestimmte Technik nicht objektiv „überholt“ ist.24

### 7.5 Entwickeln von Maßnahmen zur Kompensation


Aus naturschutzfachlicher Sicht sollten für den bestmöglichen Ausgleich Ausgleichsmaßnahmen mit engem funktionalen Bezug zu den beeinträchtigten Funktionen angestrebt werden, die eine gleichartige Wiederherstellung der betroffenen Funktionen gewährleisten. Gleichzeitig sollte eine räumliche Nähe zwischen dem Eingriffsraum und dem Ort für Maßnahmen zur Kompensation angestrebt werden. Der zeitliche Rahmen für die Durchführung der Maßnahmen zur Kompensation ist so zu setzen, dass die Leistungs- und Funktionsfä-

---

24 zum Inhalt der naturschutzrechtlichen Vermeidungspflicht: GASSNER, in: GASSNER/BENDOMIR-KAHLO/SCHMIDT-RÄNTSCH, § 19 BNatSchG, Rn. 20
higkeit des Naturhaushaltes und das Landschaftsbild möglichst ohne zeitliche Unterbrechun-
gerhalten bleiben.

Der Maßnahmenumfang ist zunächst für jede beeinträchtigte Funktion getrennt zu ermitteln. Ziel ist es, zur Kompensation gleiche Funktionsausprägungen (gleichartig) in mindestens gleicher Qualität (gleichwertig) wie die beeinträchtigten Funktionen wiederherzustellen, wo-
mit in der Regel auch Maßnahmen in mindestens gleichem Umfang (d. h. auf mindestens gleicher Fläche) erforderlich werden.

Im Weiteren wird auf die Leitfäden und Erlasse der Länder verwiesen, die jeweils eigene Ansätze zur Ermittlung des Kompensationsumfangs erarbeitet haben. Eine Zusammenstel-
lung ist dem Anhang 5 zu entnehmen.

In Hinblick auf die Lage der Kompensationsmaßnahmen sind auf der Ebene der verbindli-
chen Bauleitplanung formal verschiedene Möglichkeiten zulässig:

- Kompensation auf dem Eingriffsgrundstück (Vorhabensraum),
- Kompensation im sonstigen Geltungsbereich des B-Plans, ggf. auch in einem räumlich
grenzten Teilgebiet eines einheitlichen B-Plans,
- Kompensation außerhalb des Geltungsbereiches des Eingriffsbebauungsplans (aber im
Gemeindegebiet) in einem gesonderten Kompensations-Bebauungsplans oder ohne ei-
nen separaten Bebauungsplan (letzteres zumeist auf gemeindeeigenen Grundstücken),
- Kompensation außerhalb des Gemeindegebietes.

Welche Vorgehensweise zu bevorzugen ist, hängt von den konkreten Gegebenheiten und
landschaftsplanerischen Zielvorstellungen des Einzelfalls ab. Eine Beeinträchtigung von
wertvollen Brutvögeln des Offenlandes durch die Silhouettenwirkung der PV-Module kann
nicht durch eine Kompensationsfläche im Nahbereich der Module ausgeglichen werden. Hier
sind ggf. Maßnahmen im gleichen Naturraum aber außerhalb des Geltungsbereiches des Ein-
griffsbebauungsplans anzustreben.

Um jedoch ein konzeptionsloses Nebeneinander von kleinflächigen und zumeist isolierten
Kompensationsflächen zu vermeiden, ist es notwendig, die Ausgleichs- und Ersatzmaßnah-
men in ein räumliches Gesamtkonzept des Naturschutzes und der Landschaftspflege einzu-

Für die Planung einer PV-Freiflächenanlage kommt allerdings – je nach Größe der Anlage –
häufig weniger ein eigenständiges räumliches Ausgleichskonzept in Frage. Vielmehr gibt es
bei vielen Gemeinden inzwischen Flächenpools, in denen auf Grundlage eines wie oben
bereits beschriebenen landschaftsplanerischen Konzeptes eine sinnvolle Bündelung von
Flächen zu größeren Maßnahmekomplexen erfolgt ist, denen dann bei räumlicher Entkoppe-
lung von Eingriff und Ausgleich die einzelnen Eingriffsvorhaben im Gemeindegebiet zuge-
ordnet werden können.
Vorteile in dieser Vorgehensweise liegen vor allem darin, dass die je nach Planungsraum häufig aufwändige Suche nach geeigneten Kompensationsflächen während der Planung entfällt und somit Zeit gespart wird und dass die Kompensationsmaßnahmen in ein fachliches Gesamtkonzept integriert sind.


Da eine Gehölzkulisse in der Regel nicht als Fremdkörper in der Landschaft zu betrachten ist, entspricht eine Sicht verschattende Eingrünung der PV-Anlagen den oben genannten Anforderungen. Empfohlen wird ein mindestens 10 m breiter Gehölzstreifen aus Bäumen und Sträuchern. Eventuelle Verschattungseffekte durch die Gehölze sind durch Berücksichtigung entsprechender Abstände zu den Modulen auszuschließen, zumal dies unter Umständen einen frühzeitigen Rückschnitt der Anpflanzungen hervorrufen könnte. Denkbar sind auch gestaffelte Eingrünungskonzepte, z. B. eine direkte Begrünung der Zaunanlage (von außen) mit Sträuchern sowie eine von der Anlage abgesetzte Pflanzung optische wirksamer Großgehölze in einem für den Landschaftsraum typischen Anordnungsmuster (Baumreihe, punktuelle Baumgruppen, Einzelbäume etc.).


**Tab. 7-3: Mögliche Kompensationsmaßnahmen für Beeinträchtigungen von Pflanzen und Tieren, Boden und Landschaftsbild durch den Bau einer PV-Freiflächenanlage**

<table>
<thead>
<tr>
<th>Schutzgut</th>
<th>Mögliche Beeinträchtigungen (Auswahl)</th>
<th>Mögliche Kompensationsmaßnahmen für nicht vermeidbare Beeinträchtigungen (Auswahl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflanzen / Tiere / biologische Vielfalt</td>
<td>Verlust von Vegetation, Organismen und / oder anderen Landschaftselementen Beeinträchtigung von Vegetation durch Überdeckungseffekte</td>
<td>• Extensive Wiesen- bzw. Weidenutzung auf der Modulaufstellfläche bzw. auf Abstandsflächen&lt;br&gt;• Neuanlage von Biotopen (z. B. Sukzession auf Randstreifen und Abstandsflächen, Pflanzgebote zur Eingrünung oder Strukturvergrößerung)&lt;br&gt;• Ergänzung und Verbesserung bestehender Biotope&lt;br&gt;• populationsbezogene Habitatentwicklung</td>
</tr>
<tr>
<td></td>
<td>Beeinträchtigung angrenzender Flächen mit besonderer Habitatfunktion (z. B. durch Silhouettenwirkung der Module)</td>
<td>• Neuanlage von Habitaten&lt;br&gt;• Reduzierung bereits bestehender Beeinträchtigungen (z. B. durch Aufwertung von Wiesenvogel- oder Rastvogellebensräumen durch Nutzungsumstellung/-extensivierung)</td>
</tr>
</tbody>
</table>
### Schutzgut

#### Mögliche Beeinträchtigungen (Auswahl)

- Zerschneidung/Unterbrechung von Lebensräumen

#### Mögliche Kompensationsmaßnahmen für nicht vermeidbare Beeinträchtigungen (Auswahl)

- Neuanlage von vernetzenden Biotopen
- Behebung bzw. Reduzierung bereits bestehender vom Vorhaben unabhängiger Zerschneidungseffekte

### Boden

- Verlust von Boden

#### Mögliche Kompensationsmaßnahmen

- Entsiegelung
- Extensivierung der landwirtschaftlichen Nutzung, Rücknahme von Düngung und Pesticideinsatz
- Dauerhafte Vegetationsbedeckung von Boden und damit Schutz vor Bodenerosion

### Landschaft / Landschaftsbild

- Veränderung von Landschaftsbildräumen durch technische Überprägung, Verlust von Vegetation und anderen Landscapelementen

#### Mögliche Kompensationsmaßnahmen

- Landschaftsgerechte Einbindung durch Anlage naturraumtypischer Landschaftselemente
- Sichtverschattung beeinträchtigender Teile des Vorhabens durch direkte Eingrünung mit Gehölzen, Pflanzung optisch wirksamer Großgehölze etc.
- Einengen oder Abdecken des optischen Wirkungsbereiches des Vorhabens zur Reduzierung standortabhängiger Beeinträchtigungen (z. B. durch Sicht verschattende Gehölzpflanzungen an Siedlungsranden oder Hauptaufenthaltsorten von Erholungssuchenden)
- Behebung bereits bestehender von Vorhaben unabhängiger Beeinträchtigungen im Sichtzusammenhang des Vorhabens

### 7.6 Erstellen einer Eingriffs-Kompensations-Bilanz

Aufgabe einer Eingriffs-Kompensations-Bilanz ist es, übersichtlich und nachvollziehbar darzulegen, welche Beeinträchtigungen zu erwarten sind und welche Vorkehrungen zur Vermeidung/Minderung bzw. welche Maßnahmen zur bestmöglichen Kompensation dieser Beeinträchtigungen aus naturschutzfachlicher Sicht durchzuführen sind. Sie ist so zu gestalten, dass sie die zentrale Grundlage für die Einbeziehung der Ergebnisse der Eingriffsregelung in die bauleitplanerische Abwägung bilden kann.
8 Hinweise zur Gestaltung von PV-Freiflächenanlagen

8.1 Anforderungen an die Gestaltung einer PV-Freiflächenanlage

An die Gestaltung einer PV-Freiflächenanlage sind die nachfolgend genannten Anforderungen zu stellen:

- Der Gesamtversiegelungsgrad einer Anlage ist auf das unbedingt erforderliche Maß zu beschränken (als Richtwert fordern UVS & NABU 2005 einen Gesamtversiegelungsgrad von max. 5%).

- Um die Ausbildung einer geschlossenen Vegetationsdecke zu gewährleisten, ist die Aufständerung fest installierter Anlagen so zu gestalten, dass ausreichend Streulicht auf die Bodenoberfläche fällt (erforderlicher Mindestabstand zwischen Modulunterkante und Bodenoberfläche etwa 0,80 m).

- Zur Offenhaltung der Modulaufstellflächen sind extensive Nutzungskonzepte anzustreben: entweder eine ein- bis zweimalige Schnittnutzung oder eine extensive Beweidung mit Schafen jeweils unter Verzicht auf jegliche Düngung und Pflanzenschutzmittel.

- Bei einer Nutzung bestehender Trockenrasen, Magerrasen oder Grünlandbiotope auf Konversionsflächen sind Pflege- bzw. Beweidungskonzepte zu erarbeiten, die eine zielgerichtete naturschutzfachliche Bewirtschaftung der Flächen sicherstellen. Aspekte wie die Schonung bodenbrütender Vogelarten oder die Weideverträglichkeit bestimmter Pflanzengesellschaften müssen dabei berücksichtigt werden.


- Nicht vermeidbare Einzäunungen sind so zu gestalten, dass sie keine Barriere für Klein- und Mittelsäuger darstellen. Sie sollten das Durchqueren der Anlage ermöglichen und die natürlichen Funktionsbeziehungen zwischen dem eingezäumten Grundstück und der...

- Auf eine Beleuchtung von PV-Freiflächenanlagen sollte verzichtet werden. Von hellem Licht in oder angrenzend an die freie Landschaft werden insbesondere Insekten und Schmetterlinge, aber auch Vögel und Fledermäuse in ihrem natürlichen Verhalten erheblich gestört. Sofern eine Beleuchtung nicht zu vermeiden ist, muss durch einfach umsetzbare Vermeidungs- und Minimierungsmaßnahmen ein Schutz gegen Lichtimmissionen gewährleistet werden (Einsatz von Natriumdampf-Niederdrucklampen u. a.).
- Die Verpflichtung zum Rückbau einer Anlage nach Aufgabe der Photovoltaiknutzung ist bereits bei der Planung einer Anlage zu berücksichtigen, z. B. durch die Wahl einer problemlos rückbaufähigen Gründungsbauweise oder die Verwendung recyclingfähiger Materialien.
- Weitere Hinweise zur Ausgestaltung von PV-Freiflächenanlagen sind Tab. 7-2 zu entnehmen.

Abb. 8-1: Beispielhafte Eingrünung einer PV-Freiflächenanlage

(GEMEINDE ESTENFELD 2004)
8.2 Hinweise zur Herstellung, Unterhaltung und Pflege von Maßnahmenflächen

8.2.1 Anpflanzungen


8.2.2 Grünland


Eigenbegrünung


Ansaat

Aushagerung von Flächen


Pflege / Bewirtschaftung

Die Pflege bzw. Bewirtschaftung der Anlageflächen kann durch Mahd oder Beweidung bzw. durch eine Kombination beider Nutzungsformen erfolgen. In Tab. 8-1 werden die unterschiedlichen Auswirkungen dieser zur Verfügung stehenden Nutzungsinstrumente (Beweidung/Mahd) auf die Entwicklung von Grünlandflächen aufgezeigt.

Sofern eine extensive Nutzung der Grünlandflächen angestrebt wird, sollten für die Modul-Aufstellflächen folgende Nutzungsauflagen festgeschrieben werden:

- keine Ausbringung von Gülle, Jauche und sonstigen Düngemitteln,
- kein Einsatz von Pflanzenschutzmitteln,
- extensive Beweidung, vorzugsweise Hütehaltung (die Intensität der Beweidung richtet sich nach den Wuchsverhältnissen, die mit Bodenart und Exposition variiert) oder

Im Einzelfall kann zudem eine zeitliche Einschränkung der Bewirtschaftung (z. B. Festlegung von Beweidungszeiten oder Mahdterminen) sinnvoll sein.


Bei der Hütehaltung ist der Schäferbetrieb mit einem Winterstall ausgestattet und hütet in einem größeren Umkreis geeignete Flächen ab. Die Beweidung von Flächen im Hütebetrieb ist in der Regel weniger intensiv als die Koppelschafhaltung.


Sofern das Pflegeziel nur darin besteht, die Flächen offen zu halten oder keine Schafherde in Hütehaltung zur Verfügung steht, kann eine kleinere Schafherde (u. U. mit mobilen Koppeln - Elektroknotengitterzaun u. a.) eingesetzt werden. Eine derartige Bewirtschaftungsform eignet sich jedoch nicht zur dauerhaften Pflege von Trocken-, Magerrasen oder Heiden, wie sie auf Konversionsflächen auftreten können.

**Tab. 8-1: Vergleichende Betrachtung von Beweidung und Mahd als Instrumente zur Offenhaltung von PV-Freiflächenanlagen**

(JESSEL et al. 2002, verändert)

<table>
<thead>
<tr>
<th></th>
<th>Beweidung</th>
<th>Mahd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetationsstruktur</td>
<td>Ausbildung struktureller Unterschiede durch selektiven Verbiss und durch Viehtritt</td>
<td>Nahezu gleich ausgebildete Struktur durch gleiche Wirkung (Mahd) auf der Gesamtfläche</td>
</tr>
<tr>
<td>Mikrorelief des Bodens</td>
<td>Schonung und Neubildung z. B. Ameisen und Maulwurf</td>
<td>Nivellierung</td>
</tr>
<tr>
<td>Bodenverdichtung</td>
<td>Lokale Trittstellen, Pfade</td>
<td>Nur wenig kleinräumige Unterschiede</td>
</tr>
<tr>
<td>Nährstoffverteilung</td>
<td>Unterschiedliche Verteilung der Nährstoffe durch tierische Exkremente</td>
<td>Keine räumlichen Unterschiede</td>
</tr>
<tr>
<td>Nährstoffentzug</td>
<td>Bei Hütehaltung mit geringer Besatzdichte und ohne Nachtpferch möglich, jedoch nur sehr langsam</td>
<td>Bei fehlender Düngung und regelmäßiger Mahd mit Abtransport des Mähgutes langsame standortabhängige Aushagerung möglich</td>
</tr>
<tr>
<td>Fauna</td>
<td>Mechanische Schäden durch Tritt, ginges Blüten- und Wirtspflanzenangebot</td>
<td>Vollständiger Verlust von Nahrungs- und Larvalbiotopen für bestimmte Tiergruppen bei vollständiger Mahd</td>
</tr>
<tr>
<td>Flora</td>
<td>Selektiver Verbiss einzelner Arten, Trittschäden, Vorherrschaft von Pflanzen, die durch Weide begünstigt werden</td>
<td>Ausgeglichenes Konkurrenzverhältnis bei regelmäßiger Mahd nach Abblühen der Wiese</td>
</tr>
</tbody>
</table>
8.3 Sichern von Flächen und Maßnahmen zur Vermeidung, Verminderung und Kompensation von Beeinträchtigungen im Zusammenhang mit der Planung einer PV-Freiflächenanlage


Insbesondere in denjenigen Bundesländern, die keine gesonderte Grünordnungsplanung kennen (z. B. Hessen, vgl. z. B. § 11 HENatSchG), können die erforderlichen Vermeidungs-, Minderungs- und Kompensationsmaßnahmen nur in dem durch das Baugesetzbuch gegebenen Rahmen dargestellt und festgesetzt werden. Die aus naturschutzfachlicher Sicht formulierten Anforderungen an die Vermeidung, Minderung und Kompensation von Beeinträchtigungen müssen dann so aufbereitet werden, dass sie in bauleitplanerische Aussagen überführt werden können, weil sie nur so an der Bindewirkung der jeweiligen städtebaulichen Planung teilnehmen können. Diesbezüglich sind in erster Linie Darstellungen gemäß §5 Abs. 2 und Abs. 2a BauGB und Festsetzungen gemäß § 9 Abs. 1 und Abs. 1a BauGB von Bedeutung, die zeichnerisch und/oder textlich unmittelbar in den eigentlichen Bebauungsplan übernommen werden.

Die nachfolgenden Tabelle gibt eine Überblick, wie Vorkehrungen zur Vermeidung, Verminderung und Kompensation im Zusammenhang mit PV-Freiflächenanlagen auf der Grundlage des BauGB und der BauNVO in Darstellungen, Festsetzungen und sonstige Regelungen überführt werden können.

---

25 Dieser Arbeitsschritt gehört nicht mehr zur Eingriffsregelung im engeren Sinn.
### Tab. 8-2: Auswahl von Darstellungs-, Festsetzungs- und weiteren Regelungsmöglichkeiten in der Bauleitplanung zur Unterstützung von Vermeidungs- und Kompensationszielen im Zusammenhang mit der Planung von PV-Freiflächenanlagen

<table>
<thead>
<tr>
<th>Konkretes Ziel / konkrete Maßnahme (Auswahl)</th>
<th>Darstellungs-, Festsetzungs- und Regelungsmöglichkeiten ... (Auswahl)</th>
<th>Rechtsgrundlage nach BauGB oder BauNVO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biotopschutz allg.</td>
<td>Festlegung von Lage und Größe der überbaubaren bzw. nicht überbaubaren Grundstücksfläche durch Baugrenzen</td>
<td>§ 9 Abs. 1 Nr. 2 BauGB i. V. mit § 23 BauNVO</td>
</tr>
<tr>
<td>Erhalt, Schaffung und Entwicklung von flächenhaften Biotopen/Anpflanzung von standortheimischen Gehölzen</td>
<td>Flächen oder Maßnahmen zum Schutz, zur Pflege und zur Entwicklung von Boden, Natur und Landschaft (z. B. Sukzessionsflächen)</td>
<td>§ 5 Abs. 2 Nr. 10 BauGB § 9 Abs. 1 Nr. 20 BauGB</td>
</tr>
<tr>
<td></td>
<td>Anpflanzen von Bäumen, Sträuchern und sonstigen Bepflanzungen (Regelungen zu Art, Qualität und Anzahl möglich)</td>
<td>§ 9 Abs. 1 Nr. 25a BauGB</td>
</tr>
<tr>
<td></td>
<td>Flächen oder Maßnahmen zum Ausgleich</td>
<td>§ 1a Abs. 3 i. V. mit § 200a Satz 2 BauGB</td>
</tr>
<tr>
<td>Sicherung vorhandenen Bewuchses (Gehölze u. a.)</td>
<td>Bindungen für die Erhaltung von Bäumen, Sträuchern und sonstigen Bepflanzungen</td>
<td>§ 9 Abs. 1 Nr. 25b BauGB</td>
</tr>
<tr>
<td>Extensive Grün- / oder Weidelandnutzung zwischen den Modulen</td>
<td>Anpflanzungsgebote und Pflegegebote (als Planverwirklichungsinstrumente)</td>
<td>§ 9 Abs. 1 Nr. 25a BauGB i. V. mit § 178 BauGB</td>
</tr>
<tr>
<td>Extensive Grün- / oder Weidelandnutzung auf Randflächen oder Pufferzonen</td>
<td>Anpflanzungsgebote und Pflegegebote (als Planverwirklichungsinstrumente)</td>
<td>§ 9 Abs. 1 Nr. 25a BauGB i. V. mit § 178 BauGB</td>
</tr>
<tr>
<td>Entwicklung/Sicherung einer geschlossenen Vegetationsdecke (auch unter den Modulen)</td>
<td>Die Festsetzung einer bestimmten Gestaltung für die Anlagen (z. B. Aufstandserhöhung der Module in einer bestimmten Höhe) ist bei regulären Bebauungsplänen nicht möglich. Hier erweist sich der Vorhaben- und Erschließungsplan als Vorteil, weil er nicht an die Festsetzungen des § 9 Abs. 1 BauGB gebunden ist (vgl. § 12 Abs. 3 Satz 2 BauGB)</td>
<td>§ 9 Abs. 1 Nr. 20 BauGB</td>
</tr>
<tr>
<td>Minderung der Barrierewirkung, Gewährleistung einer Durchlässigkeit der Einzäunung für Klein- und Mittelsäuger</td>
<td>Flächen oder Maßnahmen zum Schutz, zur Pflege und zur Entwicklung von Boden, Natur und Landschaft (Textliche Konkretisierung z. B. hinsichtlich Anzahl und Größe von Durchlässen)</td>
<td>§ 9 Abs. 1 Nr. 20 BauGB</td>
</tr>
</tbody>
</table>

---

26 § 9 Abs. 1 Ziff. 25 Buchst. a BauGB deckt auch Festsetzungen zu bestimmten Arten von Pflanzen und ihre Mischung, vgl. BVerwG, NVwZ 1991, 877 [878]
### Konkretes Ziel / konkrete Maßnahme (Auswahl)

<table>
<thead>
<tr>
<th>Darstellung-, Festsetzungs- und Regelungsmöglichkeiten .... (Auswahl)</th>
<th>Rechtsgrundlage nach BauGB oder BauNVO</th>
</tr>
</thead>
<tbody>
<tr>
<td>.... die insbesondere zur Unterstützung der Vermeidungs- und Kompensationsziele für das Schutzgut „Boden“ genutzt werden können</td>
<td></td>
</tr>
<tr>
<td>Erhaltung und Schutz des natürlich anstehenden Bodens, Anforderungen an den Bodenaushub</td>
<td>Begrenzung oder Ausschluss von Bodenarbeiten; Wiederverfüllung mit dem gleichen Bodenaushub (Bodenpflegemaßnahmen sind dabei nicht auf die Schädlichkeitsschwelle des BBodSchG beschränkt) 27</td>
</tr>
<tr>
<td>Begrenzung der Bodenversiegelung</td>
<td>Festsetzung der Flächen, die nicht oder nur eingeschränkt versiegelt werden dürfen 28 sofern hierfür städtebauliche Gründe angeführt werden können</td>
</tr>
<tr>
<td>Verhinderung umfangreicher Gelände-modellierungen und Veränderungen der Oberfläche</td>
<td>Abgrabungs- und Auffüllungsverbote (ggf. Beschränkt auf bestimmten Umfang)</td>
</tr>
<tr>
<td>Festlegung für die Führung von oberirdischen und unterirdischen Leitungen</td>
<td>Festsetzung, ob und wie Kabel unterirdisch geführt werden dürfen (einschließlich der konkreten Lage)</td>
</tr>
<tr>
<td>.... die insbesondere zur Unterstützung der Vermeidungs- und Kompensationsziele für das Schutzgut „Wasser“ genutzt werden können</td>
<td></td>
</tr>
<tr>
<td>Erhalt von Gewässern</td>
<td>Bindungen für den Erhalt von Gewässern</td>
</tr>
<tr>
<td>Versickerungsfähige Gestaltung von Erschließungs- und Betriebsflächen (z. B. wasserdurchlässige Bodenbeläge)</td>
<td>Flächen oder Maßnahmen zum Schutz, zur Pflege und zur Entwicklung von Boden, Natur und Landschaft (Textliche Konkretisierung zu Belagsarten möglich)</td>
</tr>
<tr>
<td>.... die insbesondere zur Unterstützung der Vermeidungs- und Kompensationsziele für das Schutzgut „Landschaftsbild“ genutzt werden können</td>
<td></td>
</tr>
<tr>
<td>Erhaltung und Gestaltung des Landschaftsbildes (Sichtschutz und Abschirmung, Bereicherung des Landschaftsbildes)</td>
<td>Anpflanzen von Bäumen, Sträuchern und sonstigen Bepflanzungen (Regelungen zu Art, Qualität und Anzahl möglich)</td>
</tr>
<tr>
<td>Erhaltung und Gestaltung des Landschaftsbildes (Reduzierung des visuellen Wirkaumes, Minderung der technischen Überprägung des Landschaftsbildes)</td>
<td>Festsetzungen zur Höhe der Anlagen</td>
</tr>
</tbody>
</table>

9 Recycling / Rückbau

9.1 Recycling der Module


Derzeit fallen Solarstromanlagen noch nicht unter die Europäische Elektronikschröttverordnung. In absehbarer Zeit ist jedoch mit einer Neufassung und damit einer Einbeziehung derartiger Anlagen zu rechnen. Damit wären die Hersteller verpflichtet, die Rücknahme und das Recycling zu organisieren. Im Vorgriff auf die zu erwartenden Regelungen arbeiten einige Unternehmen bereits an einem freiwilligen Rücknahmesystem.


Auch für die schwermetallhaltigen CdTe-Dünnschichttechnologie hat der Hersteller bereits ein Recyclingverfahren entwickelt. Dabei werden die Cd-haltigen Schichten vom restlichen, weitgehend aus Glas bestehenden Modul getrennt und die Metalle einschließlich des Cadmiums anschließend zu einem Material verfestigt, das dann zur Metall-Rückgewinnung an andere Firmen weitergeleitet wird.

9.2 Rückbau der Anlagen


Ob dieser Rückbau nach dem im EEG fixierten Förderzeitraum (20 Kalenderjahre zzgl. des Jahres der Inbetriebnahme) oder zu einem späteren Zeitpunkt (sofern ein wirtschaftlicher Weiterbetrieb der Anlage gesichert ist) erfolgen soll, ist im Einzelfall zu entscheiden. Aus naturschutzfachlicher Sicht können derzeit keine Gründe angeführt werden, die grundsätzlich gegen einen Weiterbebetrieb sprechen würden.
Beim Rückbau ist für die meisten Bodentypen damit zu rechnen, dass die Kabelgräben geöffnet werden müssen, um die Kabel aus dem Erdreich zu entfernen. Ein Belassen der Kabel im Erdreich ist wegen des hohen Gehalts an wertvollem Kupfer auch in Zukunft unwahrscheinlich und auch nicht wünschenswert. Der gesamte Aufwand für das Aufgraben, für die Demontage und das Entnehmen der Kabel, das Verfüllen der Kabelgräben und das Wiederherstellen einer standortgerecht bewachsenen Oberfläche liegt heute vorsichtig geschätzt mindestens 10 % niedriger als der Erlös für den Kabelschrott (Kosten vom Sommer 2005).

Verlegehilfen, die ermöglichen würden, die Kabel auch nach mehr als 20 Jahren ohne Aufgraben aus dem Boden zu ziehen, müssten nach derzeitigem Stand der Technik sehr aufwändig sein und werden daher bislang nicht eingesetzt. So lange wie der Mehraufwand für eine standort- und landschaftsgerechte Renaturierung der wieder geöffneten Kabelgräben vom Erlös des Kabelschrotts getragen wird, besteht auch kein Kostendruck, entsprechende Verlegehilfen zu entwickeln.
10 Literatur- und Quellenverzeichnis


BauGB → Baugesetzbuch


BBodSchG → Bundes-Bodenschutzgesetz

BNatSchG → Bundesnaturschutzgesetz


27.11.2007 Seite 97
Leitfaden zur Berücksichtigung von Umweltbelangen bei der Planung von PV-Freiflächenanlagen

Literatur- und Quellenverzeichnis


EEG → Gesetz für den Vorrang Erneuerbarer Energien (Erneuerbare-Energien-Gesetz)


GFN → Gesellschaft für Freilandökologie und Naturschutzplanung mbH – GFN (2007)


11 Anhang

Anhang 1: Gesetz für den Vorrang Erneuerbarer Energien (Erneuerbare-Energien-Gesetz – EEG) § 11


§ 11 Vergütung für Strom aus solarer Strahlungsenergie

(1) Für Strom aus Anlagen zur Erzeugung von Strom aus solarer Strahlungsenergie beträgt die Vergütung mindestens 45,7 Cent pro Kilowattstunde.

(2) Wenn die Anlage ausschließlich an oder auf einem Gebäude oder einer Lärmschutzwand angebracht ist, beträgt die Vergütung

1. bis einschließlich einer Leistung von 30 Kilowatt mindestens 57,4 Cent pro Kilowattstunde,

2. ab einer Leistung von 30 Kilowatt mindestens 54,6 Cent pro Kilowattstunde und

3. ab einer Leistung von 100 Kilowatt mindestens 54,0 Cent pro Kilowattstunde.

Die Mindestvergütungen nach Satz 1 erhöhen sich um jeweils weitere 5,0 Cent pro Kilowattstunde, wenn die Anlage nicht auf dem Dach oder als Dach des Gebäudes angebracht ist und wenn sie einen wesentlichen Bestandteil des Gebäudes bildet. Gebäude sind selbständig benutzbare, überdeckte bauliche Anlagen, die von Menschen betreten werden können und geeignet oder bestimmt sind, dem Schutz von Menschen, Tieren oder Sachen zu dienen.

(3) Wenn die Anlage nicht an oder auf einer baulichen Anlage angebracht ist, die vorrangig zu anderen Zwecken als der Erzeugung von Strom aus solarer Strahlungsenergie errichtet worden ist, ist der Netzbetreiber nur zur Vergütung verpflichtet, wenn die Anlage vor dem 1. Januar 2015

1. im Geltungsbereich eines Bebauungsplans im Sinne des § 30 des Baugesetzbuches oder

2. auf einer Fläche, für die ein Verfahren nach § 38 Satz 1 des Baugesetzbuches durchgeführt worden ist,

in Betrieb genommen worden ist.

(4) Für Strom aus einer Anlage nach Absatz 3, die im Geltungsbereich eines Bebauungsplans errichtet wurde, der zumindest auch zu diesem Zweck nach dem 1. September 2003 aufgestellt oder geändert worden ist, ist der Netzbetreiber nur zur Vergütung verpflichtet, wenn sie sich
1. auf Flächen befindet, die zum Zeitpunkt des Beschlusses über die Aufstellung oder Änderung des Bebauungsplans bereits versiegelt waren,

2. auf Konversionsflächen aus wirtschaftlicher oder militärischer Nutzung befindet oder

3. auf Grünflächen befindet, die zur Errichtung dieser Anlage im Bebauungsplan ausgewiesen sind und zum Zeitpunkt des Beschlusses über die Aufstellung oder Änderung des Bebauungsplans als Ackerland genutzt wurden.


(6) Abweichend von § 3 Abs. 2 Satz 2 gelten mehrere Fotovoltaikanlagen, die sich entweder an oder auf demselben Gebäude befinden und innerhalb von sechs aufeinander folgenden Kalendermonaten in Betrieb genommen worden sind, zum Zweck der Ermittlung der Vergütungshöhe nach Absatz 2 für die jeweils zuletzt in Betrieb genommene Anlage auch dann als eine Anlage, wenn sie nicht mit gemeinsamen für den Betrieb technisch erforderlichen Einrichtungen oder baulichen Anlagen unmittelbar verbunden sind.
Anhang 2

Tab. 11-1: Verfahrensablauf bei der Bebauungsplanung mit Umweltprüfung  
(nach SCHRODTER et al. 2004)

<table>
<thead>
<tr>
<th>Verfahrensablauf bei der Bebauungsplanung mit Umweltprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feststellung des Planerfordernisses</td>
</tr>
<tr>
<td>Festlegung des Untersuchungsrahmens (Scoping) für die Umweltprüfung</td>
</tr>
<tr>
<td><strong>Aufstellungsbeschluss (§ 2 (1) BauGB)</strong></td>
</tr>
<tr>
<td>(in Kenntnis des Untersuchungsrahmens für die Umweltprüfung)</td>
</tr>
<tr>
<td><strong>Auszarbeitung des Vorentwurfes, Umweltprüfung</strong></td>
</tr>
<tr>
<td><strong>Frühzeitige Beteiligung der Öffentlichkeit (§ 3 (1) BauGB)</strong></td>
</tr>
<tr>
<td><strong>Frühzeitige Beteiligung der Behörden und sonstiger Träger öffentlicher Belange (§ 4 (1) BauGB)</strong></td>
</tr>
<tr>
<td>Abstimmung des Umfangs und Detaillierungsgrades der Umweltprüfung</td>
</tr>
<tr>
<td><strong>Auszarbeitung des Entwurfes mit Begründung incl. Umweltbericht</strong></td>
</tr>
<tr>
<td>Auswertung der Stellungnahmen aus der frühzeitigen Beteiligung und Einarbeitung in die Planung</td>
</tr>
<tr>
<td><strong>Auslegung durch den Gemeinderat</strong></td>
</tr>
<tr>
<td><strong>Öffentliche Auslegung des Bebauungsplanentwurfes</strong></td>
</tr>
<tr>
<td>auf die Dauer eines Monats, öffentliche Bekanntmachung eine Woche vor Beginn der Auslegung mit Ort, Dauer sowie Angaben dazu, welche Arten umweltbezogener Informationen verfügbar sind (§ 3 (2) BauGB)</td>
</tr>
<tr>
<td><strong>Prüfung der Stellungnahmen</strong>, Abwägung durch den Gemeinderat, ggf. Einarbeiten in die Planung und wiederholte Auslegung auch bei wesentlicher Änderung des Umweltberichtes (§ 3 (2) BauGB)</td>
</tr>
<tr>
<td>Satzungsbeschluss durch den Gemeinderat über die Planfassung mit Begründung incl. Umweltbericht</td>
</tr>
<tr>
<td><strong>Genehmigungs- und Anzeigeverfahren</strong></td>
</tr>
<tr>
<td><strong>Öffentliche Bekanntmachung</strong> der Genehmigung, der Durchführung des Anzeigeverfahrens oder des Satzungsbeschlusses mit Erklärung über berücksichtigte Umweltbelange (§ 10 (4) BauGB)**</td>
</tr>
<tr>
<td>(wenn kein Verfahren erforderlich, gleichzeitig Inkrafttreten des Bebauungsplanes)</td>
</tr>
</tbody>
</table>
Anhang 3

Abb. 11-1: Gliederung eines Bebauungsplanes mit integriertem Grünordnungsplan und Umweltbericht

<table>
<thead>
<tr>
<th>Gliederung eines Bebauungsplanes mit integriertem Grünordnungsplan und Umweltbericht</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. ANLASS UND ZIEL DER PLANUNG</td>
</tr>
<tr>
<td>B. PLANUNGSRECHTLICHE VORAUSSETZUNGEN</td>
</tr>
<tr>
<td>C. LAGE, GRÖßE UND BESCHAFFENHEIT DES PLANGEBIETES</td>
</tr>
<tr>
<td>D. ZIELE UND GRUNDZÜGE DER PLANUNG</td>
</tr>
<tr>
<td>E. PLANUNGSRECHTLICHE FESTSETZUNGEN UND HINWEISE</td>
</tr>
<tr>
<td>F. GRÜNORDNERISCHE FESTSETZUNGEN</td>
</tr>
<tr>
<td>G. FLÄCHENBILANZ</td>
</tr>
</tbody>
</table>

| H. UMWELTBERICHT                     |
| 1 Einleitung                         |
| 1.1 Inhalte der Planung              |
| 1.2 Darstellung der in einschlägigen Fachgesetzen und Fachplänen festgelegten umweltrelevanten Ziele und ihre Berücksichtigung |
| 2 Beschreibung der Wirkfaktoren      |
| 3 Beschreibung des derzeitigen Umweltzustandes und der Umweltauswirkungen der Planung |
| 3.1 Schutzgut Pflanzen, Tiere, biologische Vielfalt, Natura 2000 |
| 3.2 Schutzgut Boden                  |
| 3.7 Schutzgut Kultur und sonstige Sachgüter |
| 3.8 Wechselwirkungen                 |
| 4 Prognose über die Entwicklung des Umweltzustandes |
| 5 Eingriffsregelung – Vermeidung, Verringerung und Ausgleich |
| 6 Geplante Überwachungsmaßnahmen (Monitoring) |
| 7 Prüfung anderweitiger Planungsmöglichkeiten |
| 8 Beschreibung der Untersuchungsmethoden und Hinweise auf Schwierigkeiten und Kenntnislücken |
| 9 Allgemein verständliche Zusammenfassung |

I. ERKLÄRUNG ZUM UMWELTBERICHT

J. VERFAHRENSHINWEISE

Bei der Auswahl von Arten und Artengruppen anhand von Lebensraumtypen sind jene Arten und Artengruppen besonders zu berücksichtigen, die üblicherweise für den entsprechenden Lebensraumtyp den größten Informationsgewinn ermöglichen und damit ein gute lebensraumbezogene Interpretierbarkeit der Daten sicherstellen.

Tab. 11-2 liefert einen Überblick über die Eignung von Tierartengruppen zur Beantwortung planerischer Fragestellungen. Die sich daran anschließende Tab. 11-3 stellt dagegen für die Hauptgruppen von Lebensraumtypen jene Artengruppen dar, die im Hinblick auf das Arten- spektrum üblicherweise den größten Informationsgehalt liefern.

Tab. 11-2: Eignung von Tierartengruppen zur Beantwortung typischer planerischer Fragestellungen
(nach: BERNOTAT et al. 2000)

<table>
<thead>
<tr>
<th>Artengruppe</th>
<th>Ansprüche an räumliche und zeitliche Qualitäten</th>
<th>Empfindlichkeit gegen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Räumlich-funktionale Beziehungen</td>
<td>Lebensraumbarrieren/ Zerschneidung</td>
</tr>
<tr>
<td>Mittel- und Großsäuger</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Kleinsäuger</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Fledermäuse</td>
<td>1</td>
<td>–</td>
</tr>
<tr>
<td>Vögel</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Reptilien</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Amphibien</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Libellen</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Laufkäfer</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Heuschrecken</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Bienen, Wespen</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Tagfalter, Widderchen</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Nachtfalter</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Erläuterung: Beurteilung der Eignung mit Hilfe einer vierstufigen Skala:
1: sehr hoch, 2: hoch, 3: bedingt, – gering

1 z. B. Dynamik zur Entstehung vegetationsarmer Offenbodenbereiche
2 es ist davon auszugehen, dass Immissionen, insbes. Schadstoffimmissionen, bei vielen Tierarten zu Beeinträchtigungen führen können. Zu den spezifischen Wirkfaktoren von Photovoltaik-Freiflächenanlagen s. Kap. 3.1 und Tab. 3-1.
3 Hohe Störempfindlichkeit besteht insbesondere in den Quartieren
4 Empfindlichkeit gegenüber Licht besteht v. a. bei Arten der Gattung Myotis, z. B. können vorhandene Flugrouten durch Beleuchtung unbrauchbar werden: beleuchtete Waldränder werden z. B. nur eingeschränkt als Jagdgebiete genutzt

27.11.2007 Seite 106
Tab. 11-3: Informationswert von Artengruppen in Bezug auf Lebensraumtypen
(nach: BERNOTAT et al. 2000)

<table>
<thead>
<tr>
<th>Biotoparten</th>
<th>Mittel-, Großsäuger</th>
<th>Kleinsäuger</th>
<th>Fledermäuse</th>
<th>Vögel</th>
<th>Reptilien</th>
<th>Amphibien</th>
<th>Libellen</th>
<th>Laufkäfer</th>
<th>Heuschrecken</th>
<th>Bienen, Wespen</th>
<th>Tagfalter, Widderchen</th>
<th>Nachtfalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wälder, Waldränder</td>
<td>1 1 1 1 – 2 – 1 3 2 2 1</td>
<td></td>
</tr>
<tr>
<td>Gebüsche, Feldgehölze und Einzelbäume</td>
<td>1 1 2 2 – – – 2 3 2 2 3</td>
<td></td>
</tr>
<tr>
<td>Quellen</td>
<td>– – – – – 2 3 – – – – –</td>
<td></td>
</tr>
<tr>
<td>Fließgewässer</td>
<td>2 1 2 1 2 2 1 – – – – –</td>
<td></td>
</tr>
<tr>
<td>Stillgewässer</td>
<td>1 1 2 1 2 1 1 – – – – –</td>
<td></td>
</tr>
<tr>
<td>Niedermoore, Sümpfe, Ufer, Verlandungszonen</td>
<td>3 1 2 1 2 1 1 1 1 3 1 1</td>
<td></td>
</tr>
<tr>
<td>Hochmoore, Übergangsbiotope</td>
<td>– – – 1 2 3 1 3 3 3 1 1</td>
<td></td>
</tr>
<tr>
<td>Fels-, Gesteins- und Offenbiotope</td>
<td>– – – 3 1 – – 1 1 1 2 3</td>
<td></td>
</tr>
<tr>
<td>Heiden und Magerrasen</td>
<td>– 2 3 2 1 – – 2 1 1 1 1</td>
<td></td>
</tr>
<tr>
<td>Grünland und kleinflächige Begleitstrukturen</td>
<td>– 3 3 1 3 2 – 1 1 1 1 2</td>
<td></td>
</tr>
<tr>
<td>Äcker einschl. kleinflächige Begleitstrukturen</td>
<td>– 3 3 2 3 – – 1 3 3 – –</td>
<td></td>
</tr>
<tr>
<td>Ruderalfluren</td>
<td>– – – 3 3 – – 2 2 1 2 3</td>
<td></td>
</tr>
<tr>
<td>Grün im Siedlungsbereich, Parkanlagen</td>
<td>3 3 2 2 – 3 – – 3 3 3 3</td>
<td></td>
</tr>
<tr>
<td>Gebäude und Gebäudekomplexe</td>
<td>3 3 1 3 – – – – 3 – –</td>
<td></td>
</tr>
</tbody>
</table>

Erläuterung: 1: sehr hoch, 2: hoch, 3: hoch, jedoch nur bei einzelnen Arten, – gering

1 Gewässer sind bevorzugte Jagdhabitate und werden von vielen Arten als Flugroute in Jagdreviere genutzt
Anhang 5: Zusammenstellung von Arbeitshilfen, Normen und Richtlinien u. Ä. für die Bauleitplanung auf Landesebene

Baden-Württemberg

LANDESANSTALT FÜR UMWELTSCHUTZ BADEN-WÜRTTEMBERG (Hrsg.):
  http://lubw.baden-wuerttemberg.de/servlet/is/6565/
  http://www.xfaweb.baden-wuerttemberg.de/nafaweb/berichte/per_03/per03.html

Bayern

BAYERISCHES LANDESAMT FÜR UMWELTSCHUTZ (LfU, 2001): Planungshilfen: Eingriffsregelung auf der Ebene der Flächennutzungs- und Landschaftsplanung; Merkblätter zur Landschaftspflege und zum Naturschutz, Nr. 3.5.
http://www.landschaftsplanung.bayern.de/themen/material/lfu_35.pdf


http://www.bay-gemeindetag.de/information/oekokonto.pdf
Berlin

http://www.stadtentwicklung.berlin.de/umwelt/landschaftsplanung/uvp/download/uvp-leit-06.pdf


Brandenburg


Bremen

HANSEATISCHE NATURENTWICKLUNG GMBH (HANEG, 1998): Handlungsanleitung zur Anwendung der Eingriffsregelung in Bremen. Universität Hannover (nur mit Zugangsberechtigung erhältlich; Anfragen: haneg, Konsul-Smidt-Str.8p, 28217 Bremen, Tel. 0421-2770030, info@haneg.de; Bezugsquelle: walter.kienzle@umwelt.bremen.de)

http://www.umwelt.bremen.de/buisy05/sixcms/media.php/13/Arbeitshilfe_Umweltpr%FCfung_HB_Bauleitplanung.pdf
Hessen

HESSISCHES MINISTERIUM FÜR UMWELT, LÄNDLICHEN RAUM UND VERBRAUCHERSCHUTZ (HMULV; Hrsg.):

  http://www.hmulv.hessen.de/irj/HMULV_Internet?cid=19e623f0bbec27d9d18a26d4fb84d845

  http://www.hmulv.hessen.de/irj/HMULV_Internet?cid=19e623f0bbec27d9d18a26d4fb84d845

HESSISCHES MINISTERIUM FÜR WIRTSCHAFT, VERKEHR UND LANDESENTWICKLUNG (HRSG.):

  http://www.wirtschaft.hessen.de/irj/HMWVL_Internet?cid=9e450e78db498bc14f5bbbf7ccbe8305&DisplayIndex=0

  http://www.wirtschaft.hessen.de/irj/HMWVL_Internet?cid=9e450e78db498bc14f5bbbf7ccbe8305&DisplayIndex=0

Mecklenburg-Vorpommern

Niedersachsen

http://www.nlwkn.niedersachsen.de/master/C7648113_N7646923_L20_D0_I5231158


Nordrhein-Westfalen
LANDESANSTALT FÜR ÖKOLOGIE, BODENORDNUNG UND FORSTEN NRW (2006):
  http://www3.lanuv.nrw.de/Willkommen/Infosysteme/Numerische_Bewertungsverfahren/N um-Bew-Biotoptypen_Eingriffsregelung-NRW.pdf

  http://www3.lanuv.nrw.de/Willkommen/Infosysteme/Numerische_Bewertungsverfahren/N um-Bew-Biotoptypen_Bauleitplanung-NRW.pdf
Saarland

MINISTERIUM FÜR UMWELT (Hrsg.):

  http://www.saarland.de/11525.htm

- Leitfaden Eingriffsbewertung. Methode zur Bewertung des Eingriffes, der Ausgleichs- 
  und Ersatzmaßnahmen im Rahmen der naturschutzrechtlichen Eingriffsregelung sowie 
  http://www.saarland.de/dokumente/ressort_umwelt/Leitfaden3.pdf

Sachsen

Muster-Einführungserlass zum Gesetz zur Anpassung des Baugesetzbuchs an EU- 
Richtlinien (Europarechtsanpassungs gesetz Bau – EAG Bau) (EAG Bau – Mustererlass). 
http://www.sachsen.de/de/bf/staatsregierung/ ministerien/smi/smi/upload/Erlass_EAG_Bau_1 
207_2004.pdf

BRUNS u. a. Dresden. 

Sachsen-Anhalt

Umsetzung der §§ 18 bis 28 des Naturschutzgesetzes des Landes Sachsen-Anhalt und Si 
cherung des nachhaltigen Erfolgs der durchgeführten Maßnahmen. Gemeinsamer Runder 
llass des Ministeriums für Landwirtschaft und Umwelt, des Ministerium des Innern, des Minis 
teriums für Wirtschaft und Arbeit und des Ministeriums für Bau und Verkehr vom 27. Juli 
2005 (MBI. LSA S. 498).

MINISTERIUM FÜR LANDWIRTSCHAFT UND UMWELT DES LANDES SACHSEN-ANHALT:

- Verordnung über die Anerkennung und Anrechnung vorzeitig durchgeführter Maßnah 
  men zur Kompensation von Eingriffsfolgen (Ökokonto-Verordnung). Magdeburg 2005 
  (GVBl. LSA 2005, S. 24).

- Verordnung über die naturschutzrechtliche Ersatzzahlung (Ersatzzahlungsverordnung) 

**Schleswig-Holstein**


**Thüringen**

**THÜRINGER MINISTERIUM FÜR LANDWIRTSCHAFT, NATURSCHUTZ UND UMWELT (TMLNU; HRSG.):**


**Sonstiges**


Anhang 6: Zielkonzept Maßnahmenplanung

Das Zielkonzept der Kompensation leitet sich aus den räumlich-funktionalen Kompensationsforderungen der beeinträchtigten Funktionsräume sowie den Zielen der Landschaftsplanung ab.


Um ein konzeptionsloses Nebeneinander von kleinflächigen und zumeist isolierten Kompensationsflächen zu vermeiden, ist es notwendig, die Ausgleichs- und Ersatzmaßnahmen in ein räumliches Gesamtkonzept des Naturschutzes und der Landschaftspflege einzubinden. Das Zielkonzept sollte sich auf die erheblichen Beeinträchtigungen der Funktionsräume mit den betroffenen Biotopkomplexen und Teil-Gesamtlebensräumen der betroffenen Arten und Artengruppen konzentrieren (s. Abb. 11-2).


Die Zielkonzeption soll folgende Aufgaben erfüllen:

- Ableitung räumlich konkreter Kompensationsziele für die Wiederherstellung der betroffenen Funktionskomplexe,
- Identifizierung und Auswahl räumlich-funktional geeigneter Maßnahmenräume bzw. -flächen,
- Planung von möglichst räumlich zusammenhängenden Ausgleichs- und Ersatzmaßnahmen,
- Planung von multifunktional wirksamen Maßnahmen (multifunktionale Kompensation).


Abb. 11-2: Ableitung von Zielen des Kompensationskonzeptes
(nach BOSCH & PARTNER GmbH 2004)